[ 115 ]

VI. On the Geometrical Representation of the Expansive Action of Heat, and the

Theory of Thermo-dynamic Engines. By WiLLiam JoHN MacqQuorN RANKINE,
C.E., F.R.SS. Lond. and Edin. &c.

Received December 5, 18583,~—~Read January 19, 1854,

Secrion I.—INTRODUCTION AND GENERAL THEOREMS.

(Article 1.) THE first application of a geometrical diagram to represent the ex-
pansive action of Heat was made by James WatT, when he contrived the well-known
Steam-Engine Indicator, subsequently altered and improved by others in various
ways. As the diagram described by Warr’s Indicator is the type of all diagrams
representing the expansive action of heat, its general nature is exhibited in fig. 1.

Let abscissee, measured along, or parallel to, the axis Fig. 1.

OX represent the volumes successively assumed by a given .
mass of an elastic substance, by whose alternate expansion
and contraction heat is made to produce motive power ;
OV, and OV; being the least and greatest volumes which
the substance is made to assume, and OV any intermediate | 4|
volume. For brevity’s sake, these quantities will be de-
noted by V,, Vg, and V, respectively.. Then V;—V, may
represent, the space traversed by the piston of an engine
during a single stroke.

Let ordinates, measured parallel to the axis OY and at v Vo o
right angles to OX, denote the expansive pressures successively exerted by the sub-
stance at the volumes denoted by the abscissze. During the increase of volume from
V, to Vj, the pressure, in order that motive power may be produced, must be, on
the whole, greater than during the diminution of volume from Vj to V,; so that,
for instance, the ordinates VP, and VP,, or the symbols P, and P,, may represent
the pressures corresponding to a given volume V during the expansion and con-
traction of the substance respectively.

Then the area of the curvilinear figure, or Indicator-diagram, AP,BP,A, will repre-
sent the motive power, or ¢ Potential Energy,” developed or given out during a com-

plete stroke, or cycle of changes of volume of the elastic substance. The algebraical
expression for this area is

Vs
(P,—P,)dV 1
[ ) (1)
Q2
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116 MR. MACQUORN RANKINE ON THERMO-DYNAMICS.

The practical use of such diagrams, in ascertaining the power and the mode of
action of the steam in steam-engines, where the curve AP,BP,A is described by a
pencil attached to a pressure-gauge, on a card whose motion corresponds with that
of the piston, is sufficiently well known.

(2.) It appears that the earliest application of diagrams of energy (as they may be
called) to prove and illustrate the theoretical principles of the mechanical action of
heat, was made either by Carnér, or by M. CraPEYRON in his account of CARNOT'S
theory ; but the conclusions of those authors were in a great measure vitiated by
the assumption of the substantiality of heat.

In the fifth section of a paper on the Mechanical Action of Heat, published in the
Transactions of the Royal Society of Edinburgh, vol. xx., a diagram of energy is
employed to demonstrate the general law of the economy of heat in thermno-dynamic
engines according to the correct principle of the action of such machines, viz. that
the area of the diagram represents at once the potential energy or motive power
which is developed at each stroke, and the mechanical equivalent of the actual
energy, or heat, which permanently disappears.

As the principles of the expansive action of heat are capable of being presented to
the mind more clearly by the aid of diagrams of energy than by means of words and
algebraical symbolé alone, I purpose, in the present paper, to apply those diagrams,
partly to the illustration and demonstration of propositions already proved by other
means, but chiefly to the solution of new questions, especially those relating to the
action of heat in all classes of engines, whether worked by air, or by steam, or by
any other material ; so as to present, in a systematic form, those theoretical prin-
ciples which are applicable to all methods of transforming heat to motive power by
means of the changes of volume of an elastic substance.

Throughout the whole of this investigation, quantities of heat, and coefficients of
specific heat, are expressed, not by units of temperature in a unit of weight of water,
but by equivalent quantities of mechanical power, stated in foot-pounds, according
to the ratio established by Mr. JouLr’s experiments on friction (Phil. Trans. 1850) ;
that is to say,

772 foot-pounds per degree of Faur., or
1389°6 foot-pounds per Centigrade degree,

applied to one pound of liquid water at atmospheric temperatures.

(8.) Of Isothermal Curves, and Curves of No Transmission of Heat.

A curve described on a diagram of energy, such that its ordinates represent the
pressures of a homogeneous substance corresponding to various volumes, while the
total sensible or actual heat present in the body is maintained at a constant value,
denoted, for example, by Q, may be called the Isothermal Curve of @ for the given
substance. (Seefig.2.) Suppose, for instance, that the co-ordinates of the point A, V,
and P,, represent respectively a volume and a pressure of a given substance, at which
the actual heat is Q ; and the co-ordinates of the point B, viz. V; and Py, another
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volume and pressure at which the actual heat is the same; then are the points A and
B situated on the same isothermal curve QQ.

On the other hand, let the substance be Fig. 2.
allowed to expand from the volume and press-
ure V,, P,, without receiving or emitting heat;
and when it reaches a certain volume, V, let

the pressure be vepresented by P, which is
S ' ld have b ¢ B

less than the pressure wou ve been had the e I
actual heat been maintained constant, because, N

by expansion, heat is made to disappear. Then B T~

N . . By
C will be a point on a certain curve NN pass-
ing through A, which may be called a Curve of o 5 v = °x

No Transmission.

It is to be understood that, during the process last described, the potential energy
developed during the expansion, and which is represented by the area ACV,V,, is
entirely communicated to external substances; for if any part of it were expended in
agitating the particles of the expanding substance, a portion of heat would be repro-
duced by friction.

If 0 0 0 be a curve whose ordinates represent the pressures corresponding to various
volumes when the substance is absoletely destitute of heat, then this curve, which
may be called the Curve of Absolute Cold, is at once an isothermal curve and a curve
of no transmission.

So far as we yet know, the curve of absolute cold is, for all substances, an
asymptote to all the other isothermal curves and curves of no transmission, which
approach it and each other indefinitely as the volume of the substance increases
without limit.

Note.—The following remarks are intended to render more clear the precise
meaning of the term Total Actual Heat.

The Total Actual Heat of a given mass of a given substance at a given tempera-
ture, is the quantity of Physical Energy present in the mass in the form of Heat
under the given circumstances.

If, for the purpose of illustrating this definition, we assume the hypothesis that
heat consists in molecular revolutions of a particular kind, then the Total Actual
Heat of a mass is measured by the mechanical power corresponding to the vis viva
of those revolutions, and is represented by

1
- g 2.m

m being the mass of any circulating molecule, and »* the mean-square of its velocity.
But the meaning of the term Total Actual Heat may also be illustrated without
the aid of any hypothesis.
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For this purpose, let us take the ascertained fact of the production of heat by the
expenditure of mechanical power in friction, according to the numerical proportion
determined by Mr. Joure ; and let E denote the quantity of mechanical power which
must be expended in friction, in order to raise the temperature of unity of weight of
a given substance from that of absolute privation of heat to a given temperature 7.

During this operation, let the several elements of the external surface of the mass
undergo changes of relative position expressed by the variations of quantities denoted
generally by p, and let the increase of each such quantity as p be resisted by an ex-
ternally-applied force such as P.

Then during the elevation of temperature from absolute cold to 7, the energy con-
verted to the potential form in overcoming the external pressures P will be

EJ‘Pdp..

Also let the internal particles of the mass undergo changes of relative position ex-
pressed by the variations of quantities denoted generally by », and let the increase of
each such quantity as r be resisted by an internal molecular force such as R.

Then the energy converted to the potential form in overcoming internal molecular

forces will be
E.‘fRdr.

Subtracting these quantities of energy converted to the potential form by means
of external pressures and internal forces, from the whole power converted into heat
by friction in order to raise the temperature of the mass from that of absolute priva-
tion of heat to the given temperature =, we find the following result :—

Q=E—2.ypdp_2. j'Rdr;

and this remainder is the quantity of energy which refains the form of heat, in unity
of weight of the given substance at the given temperature ; that is to say, the Total
Actual Heat.

It is obvious that Total Actual Heat cannot be ascertained directly ; first, because
the temperature of total privation of heat is unattainable ; and secondly, because the
molecular forces R are unknown. '

It can, however, be determined indirectly from the latent heat of expansion of the
substance. For the heat which disappears during the expansion of unity of weight
of an elastic substance at constant actual heat from the volume V, to the volume V,,
under the constant or variable pressure P, is expressed (as will be shown in the
sequel) by

a(v
Q.7 VAB Pdv;

so that from a sufficient number of experiments on the amount of heat transformed
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to potential energy by the expansion of a given substance, the relations, for that sub-
stance, between pressure, volume, and Total Actual Heat, may be determined.

(4.) Prorosition L—THEoREM. The Mechanical Equivalent of the Heat absorbed
or given out by a substance in passing from one given stale as to pressure and volume
to-another given state, through a series of states represented by the co-ordinates of a
given curve on a diagram of energy, is represented by the area included between the
given curve and two curves of no transmission of heat drawn from its extremities, and
indefinitely prolonged in the direction representing increase of volume.

(Demonstration) (see fig. 3). Let the co-ordinates of any two points, A and B,
represent respectively the volumes and pressures of the substance in any two condi-

Fig. 3.

tions ; and let a curve of any figure, ACB, represent, by the co-ordinates of its points,
an arbitrary succession of volumes and pressures through which the substance is
made to pass, in changing from the condition A to the condition B. From the points
A and B respectively, let two curves of no transmission AM, BN, extend indefinitely
towards X ; then the area referred to in the enunciation is that contained between
the given arbitrary curve ACB and the two indefinitely prolonged curves of no trans-
mission ; areas above the curve AM being considered as representing heat absorbed
by the substance, and those below, heat given out.

To fix the ideas, let us in the first place suppose the area MACBN to be situated
above AM. After the substance has reached the state B, let it be expanded accord-
ing to the curve of no transmission BN, until its volume and pressure are represented
by the co-ordinates of the point D'. Next, let the volume V, be maintained constant,
while heat is abstracted until the pressure falls so as to be represented by the ordi-
nate of the point D, situated on the curve of no transmission AM. Finally, let the
substance be compressed, according to this curve of no transmission, until it re-
covers its primitive condition A. Then the area ACBD'DA, which represents the
whole potential energy developed by the substance during one cycle of operations,
represents also the heat which disappears, that is, the difference between the heat
absorbed by the substance during the change from A to B, and emitted during the
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change from D' to D ; for if this were not so, the cycle of operations would alter the
amount of energy in the universe, which is impossible.

The further the ordinate V,DD' is removed in the direction of X, the smaller does
the heat emitted during the change from D' to D become ; and consequently, the
more nearly does the area ACBD'DA approximate to the equivalent of the heat
absorbed during the change from A to B ; to which, therefore, the area of the inde-
finitely-prolonged diagram MACBN is exactly equal. Q.E.D.

It is easy to see how a similar demonstration could have been applied, mutatis mu-
tandis, had the area lain below the curve AM. It is evident also, that when this area
lies, part above and part below the line AM, the difference between these two parts
represents the difference betweeu the heat absorbed and the heat emitted during
different parts of the operation.

(5.) First Corollary.—TurorEM. The difference between the whole heat absorbed, and
the whole expansive power developed, during the operation represented by any curve,
such as ACB, on a diagram of energy, depends on the initial and final conditions of the
substance alone, and not on the intermediate process.

(Demonstration.) In fig. 3, draw the ordinates AV,, BV; parallel to OY. Then
the area V,ACBVj represents the expansive power developed during the operation
ACB ; and it is evident that the difference between this area and the indefinitely-pro-
longed area MACBN, which represents the heat received by the substance, depends
simply on the positions of the points A and B, which denote the initial and final con-
ditions of the substance as to volume and pressure, and not on the form of the curve
ACB, which represents the intermediate process. Q.E.D.

To express this result symbolically, it is to be considered, that the excess of the
heat or actual energy received by the substance above the expansive power or poten-
tial energy given out and exerted on external bodies, in passing from the condition
A to the condition B, is equal to the whole energy sfored wp in the substance during
this operation, which consists of two parts, viz.—

Actual energy; being the increase of the actual or sensible heat of the substance
in passing from the condition A to the condition B, which is to be represented by
this expression,

A.Q=Q3—Q,;
Potential energy ; being the power which is stored up in producing changes of mole-
cular arrangement during this process ; and which, it appears from the Theorem just
proved, must be represented, like the actual energy, by the difference between a
function of the volume and pressure corresponding to A, and the analogous fanction
of the volume and pressure corresponding to B; that is to say, by an expression of
the form,
AS=8;-S8,.

Let H, z;=area MACBN
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represent the heat received by the substance during the ‘operation ACB, and

Vs
fv PdV=area V,ACBV,
A

the power or potential energy, given out.
Then the theorem of this article is expressed as follows :—

Vs :
HA’B__j‘VAPdV:QB—QA+SB-—SA=AQ+A.S e (@)

being a form of the General Equation of the Expansive Action of Heat, in which the
Potential of Molecular Action, S, remains to be determined.

(6.) Second Corollary (see fig. 4).—The Latent Heat of Expansion of a substance,
from one given volume V, to another Vy, for a given amount of actual heat Q ; that

Fig. 4.

N
M

© A A x

is to say, the heat which must be absorbed by the substance in expanding from the
volume V, to the volume Vg, in order that the actual heat Q may be maintained
constant, is represented geometrically as follows. Let QQ be the isothermal curve
of the given actual heat Q on the diagram of energy; A, B two points on this curve,
whose co-ordinates represent the two given volumes and the corresponding pressures.
Through A and B draw the two curves of no transmission AM, BN, produced indefi-
nitely in the direction of X. Then the area contained between the portion of iso-
thermal curve AB, and the indefinitely-produced curves AM, BN, represents the
mechanical equivalent of the latent heat sought, whose symbolical expression is
formed from Equation 2 by making Q;—Q,=0, and is as follows :—

Vs
H, ; (for Q=const.)= v, PdV4+S;—S, . - . . . . (3)

MDCCCLIV. R
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Secrioxn I1,-~PROPOSITIONS RELATIVE TO HOMOGENEOUS SUBSTANCES.,

(7.) ProrosrrioNn II.—THEOREM. In fig. 5, let A,A,M, B,B,N be any two curves of
no transmission, indefinitely extended in the direction of X, intersected in the points,

Fig. 5.
Y QQ%I

S

M‘h
T
\\M X

° VaiVse  VeaVea x
A, B, A, B, by two isothermal curves, QA B,Q, Q,A,B,Q,, which are indefinitely
near to each other ; that is to say, which correspond to two quantities of actual heat,
Q, and Q,, differing by an indefinitely small quantity Q,—Q,=3Q.

Then the elementary quadrilateral area, A,B,B,A,, bears to the whole indefinitely-
prolonged area MA,B\N, the same proportion which the indefinitely small difference of
actual heat 3Q bears to the whole actual heat Q, ; or

area A;B,B,A, 2@
area MA, BN —Q;°

(Demonstration.) Draw the ordinates A,V,,, A,V,,, B,Vy,, B,Vs,. Suppose, in the
first place, that 8Q is an aliquot part of Q,, obtained by dividing the latter quantity
by a very large integer n, which we are at liberty to increase without limit.

The entire indefinitely-prolonged area MA,B,N represents a quantity of heat which
is converted into potential energy during the expansion of the substance from V,, to
V3, in consequence of the continued presence of the total actual heat Q,; for if no
heat were present no such conversion would take place. Mutatis mutandis, a similar
statement may be made respecting the area MA,B,N. By increasing without limit
the number » and diminishing 9Q, we may make the expansion from V,, to Vy, as
nearly as we please an identical phenomenon with the expansion from V,, to Vy,.
The quadrilateral A,B,B,A, represents the diminution of conversion of heat to poten-
tial energy, which results from the abstraction of any one whatsoever of the » small
equal parts 9Q into which the actual heat Q, is supposed to be divided, and it there-
fore represents the effect, in conversion of heat to potential energy, of the presence of
any one of those small portions of actual heat. And asall those portions dQ are similar
and similarly circumstanced, the effect of the presence of the whole actual heat Q, in
causing conversion of heat to potential energy, will be simply the sum of the effects
of all its small portions, and will bear the same ratio to the effect of one of those
small portions, which the whole actual heat bears to the small portion. Thus, by
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virtue of the general law enunciated below and assumed as an axiom, the theorem is
proved when 3Q is an aliquot part of Q, ; but 8Q s either an aliquot part, or a sum of
aliquot parts, or may be indefinitely approximated to by a series of aliquot parts ;
so that the theorem is universally true. Q.E.D.

The symbolical expression of this theorem is as follows. When the actual heat
Q,, at any given volume, is varied by the indefinitely small quantity 5Q, let the

pressure vary by the indefinitely small quantity % 3Q; then the area of the qua-
drilateral A,B,B,A, will be represented by

BldP

Q. —=dV,
Vi, 1@

and consequently, that of the whole figure MA,B,N, or the latent heat of expansion
from V,, to V;,, at Q,, by

HQj'V‘”dP e e @)

a result identical with that expressed in the sixth section of a paper published in the
Transactions of the Royal Society of Edinburgh, vol. xx.
The demonstration of this theorem is an example of a special application of the
following
GENERAL LAw oF THE TRANSFORMATION OF ENERGY.

The effect of the presence, in a substance, of a quantity of Actual Energy,in causing
transformation of Energy, is the sum of the effects of all its parts :—

a law first enunciated in a paper read by me to the Philosophical Society of Glas-
gow on the 5th of January, 1853.

(8.) GENERAL EQuaTioN oF THE Expansive AcTioN oF HEaT.

The two expressions for the Latent Heat of Expansion at constant Actual Heat, given
in equations 3 and 4 respectively, being equated, furnish the means of determining
the potential energy of molecular action S, so far as it depends on volume, and thus
of giving a definite form to the general equation 2

The two expressions referred to may be thus stated in words :—

I. The heat which disappears in producing a given expansion, while the actual heat
present in the substance is maintained constant, is equivalent to the sum of the po-
tential energy given out in the form of expansive power, and the potential energy
stored up by means of molecular attractions.

II. It is also equivalent to the potential energy due to the action during the ex-

. dpP . o
pansion, of a pressure Qm, at each instant equal to what the pressure would be, if its

actual rate of variation with heat at the instant in question were a constant coeffi-
cient, expressing the ratio of the whole pressure to the whole actual heat present.
R 2
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The combination of these principles, expressed symbolically, gives the following

result :—
VedP \4
H, s(for Q=const.)=Q ]B(de=j1 BPdV+SB_SA;
Va Va
whence we deduce the following general value for the potential of molecular

action :—
s-_-y(Qj—g—‘P)de.Q,. By

in which ¢.Q denotes some function of the total actual heat not depending on the
density of the substance. This value being introduced into equation (2.), produces
the following :—
Vs
HA,B"‘ Va PdV=QB_QA+SB“SA

=QB—QA+¢.QB—¢.QA+§:B (Q%-—P)dV:‘IfB—‘FA. . (6)

The symbol ¥=Q+S is used to denote the sum of the actual energy of heat, and
the potential energy of molecular action, present in the substance in any given con-
dition.

The above is the GENERAL EqQuaTrioN oF THE Expansive ActioN or HEAT IN A HO-
MOGENEOUS SUBSTANCE, and is the symbolical expression of the Geometrical Theorems
I. and II. combined.

When the variations of actual heat and of volume become indefinitely small, this
equation takes the following differential form :—

4.¥=d H—PdV=dQ+d.5=( 1+¢’.Q+QL7%Q—§‘YPdV>dQ+ (Q%fp)dv1 |
7))

- K dpP
otherwise d.H:%.dQ—I—QE—Q.dV
The coefficient of dQ in the above expressions, viz.
K d?
—k—‘-’~=1+go'.Q+Qd—Qg Pav, . . . . . . . . (8)

is the ratio of the apparent specific heat of the substance at constant volume to its
real specific heat ; that is, the ratio of the whole heat consumed in producing an in-
definitely small increase of actual heat, to the increase of actual heat produced.
These general equations are here deduced independently of any special molecular
hypothesis, as they also have been, by a method somewhat different, in the sixth sec-
tion of a paper previously referred to*. Equations equivalent to the above have also
been deduced from the Hypothesis of Molecular Vortices, in the paper already men-
tioned, and in a paper on the Centrifugal Theory of Elasticity in the same volume.

* Trans. Roy. Soc. Edinb. vol. xx.



MR. MACQUORN RANKINE ON THERMO-DYNAMICS. 125

(9.) First Corollary from Proposition II.—Turorem. If a succession of isothermal
curves corresponding to quantities of heat diminishing by equal small d;ﬂperences oQ, be
drawn across any pair of curves of no transmission, they will cut off a series qf equal
small quadrilaterals.

Second Corollary.—THEOREM. In JSig. 6, let ADM, BCN be any two curves of no
transmission, indefinitely prolonged in the direction of X, and let any two isothermal

Fig. 6.

6 X
curves Q,Qy, Q,Q;, corresponding respectively to any two quantities of actual heat
Q,, Q,, be drawn across them. Then will the indefinitely-prolonged areas MABN,
MDCN, bear to each other the simple ratio of the quantities of actual heat Q,, Q,.

Or, denoting those areas respectively by H,, H,—

, Q
%f:cf' 9y

This corollary is the geometrical expression of the law of the maximum efficiency
of a perfect thermo-dynamic engine, already investigated by other methods. In fact,
the area MABN represents the whole heat expended, or the latent heat of expansion,
the actual heat at which heat is received being Q,; MDCN, the heat lost, or the
latent heat of compression, which is carried off by conduction at the actual heat Q,;
and ABCD (being the indicator-diagram of such an engine), the motive power, pro-
duced by the permanent disappearance of an equivalent quantity of heat; and the
efficiency of the engine is expressed by the ratio of the heat converted into motive
power to the whole heat expended, viz.—

ABCD H,—H, Q Q
MABN= H, Q N ¢ (1)

(10.) Third Corollary (of Thermo-Dynamic Functions).

If the two curves of no transmission in fig. 6, ADM, BCN, be indefinitely close
together, the ratio of the heat consumed in passing from one of those curves to the
other, to the actual heat present, will be the same, whatever may be the form and
position of the curve indicating the mode of variation of pressure and volume, provided
it intersects the two curves of no transmission at a finite angle; because the area
contained between this connecting curve and the two indefinitely-prolonged curves
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of no transmission will differ from an area whose upper boundary is an isothermal
curve, by an indefinitely small area of the second order.
To express this symbolically, let

=oF

be the ratio in question, for a given indefinitely-close pair of curves of no transmis-
sion. Let the change from one of these curves to the other be made by means of
any indefinitely-small changes of actual heat and of volume, 3Q,3V. Then by the
general equation 7, the following quantity

3H 1 .Q Ky dP
=ﬁ_={ 1449 +dQJPdV}BQ+ V=(E AV L L L (L)

is constant for a given pair of indefinitely-close curves of no transmission, and is,
therefore, the complete variation of a function, having a peculiar constant value
for each curve of no transmission, represented by the following equation :—

1+¢ Q
F= Q— dQ-l— e e o (12)

This function, which I shall call a Thermo-dynamic function, has the followmg
properties :—

H:J‘QdF.............(l&)

is equivalent to the general equation (6.) ;

dF=0 N e 'S
is the equation common to all curves of no transmission ; and
F=a given constant, . . . . . . . . . (144a)

is the equation of a particular curve of no transmission.

(11.) ProrositioN III.—ProBLEM. Let it be supposed that for a given substance,
the forms of all possible isothermal curves are known, but of only one curve of no trans-
mission ; it is required to describe, by the determination of points, another curve of no
transmission, passing through a given point, situated anywhere out of the known curve.

(Solution) (see fig. 7). Let LM be the known curve of no transmission; B
the given point. Through B draw an isothermal curve Q,ABQ,, cutting LM in A.
Q, being the quantity of heat to which this curve corresponds, draw, indefinitely near
to it, the isothermal curve ¢, ¢,, corresponding to the quantity of heat Q, —3Q, where
0Q is an indefinitely small quantity. Draw any other pair of indefinitely close isother-
mal curves Q, Q,, ¢ ¢,, corresponding to the quantities of heat Q,, Q,—5Q ; 5Q being
the same as before. Let D be the point where the isothermal curve Q,Q, cuts the
known curve of no transmission. Draw the ordinates AV,, BV} parallel to OY, en-
closing, with the isothermal curves of Q, and Q,—3Q, the small quadrilateral ABba.
Draw the ordinate DV, parallel to OY, intersecting the isothermal curve of Q,—3Q
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ind. Lastly, draw the ordinate CV, in such a position as to cut off from the space
between the isothermal curves of Q, and Q,—3Q a quadrilateral DCcd, of area equal
to the quadrilateral ABba.

Fig. 7.
Y
Q
91
C 2
C 9
p
)
(¢4 Vo X

Then will C, where the last ordinate intersects the isothermal curve of Q;, approx-
imate indefinitely to the position of a point in the curve of no transmission passing
through the given point B, when the variation of actual heat dQ is diminished without
limit. And thus may be determined, to as close an approximation as we please, any
number of points in the curve of no transmission NBR which passes through any
given point B, when any one curve of no transmission LM is known.

(Demonstration.) For when the variation 9Q diminishes indefinitely, the curves
4.9, §:4-> approach indefinitely towards the curves Q,Q,, Q,Q, respectively ; and the
small quadrilaterals bounded endways by the ordinates approximate indefinitely to
the small quadrilaterals bounded endways by the curves of no transmission ; which
latter pair of quadrilaterals are equal, by the first corollary of Proposition II.

The symbolical expression of this proposition is as follows :—

Let V,, Vg, Vg, V,, be the volumes corresponding to the four points of intersection
of a pair of isothermal curves with a pair of curves of no transmission ; A and B being
on the isothermal curve of Q,, C and D on that of Q,, A and D on one of the curves
of no transmission, B and C on the other: then

V4P Vo gp
=dV (for Q=Q,)=\  ;5dV (for Q=Q,
Va aQ ( ) j‘VD Q )} (15.)

or F;—F,=F,—F,
The second form of this equation is in the present case identical, because
F,=F,; F.=F;.
(12.) Prorosrrion IV.—ProsrEM (see fig. 8). The forms of all isothermal curves
for a given substance being given, let EF be a curve of any form, representing an arbi-

trarily assumed succession of pressures and volumes. It is required to find, by the de-
termination of points, a corresponding curve passing through a given point B, such, that
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the quantity of heat absorbed or emitted by the substance, in passing from any given iso-
thermal curve to any other, shall be the same, whether the pressures and volumes be
regulated according to the original curve EF, or according to the curve passing
through the point B.

(Solution.) The process by which the latter curve is to be deduced from the former
is precisely the same with that by which one curve of no transmission is deduced from
another, in the last problem.

Fig. 8.

.
\> 4

(Demonstration.) Let GBH be the required curve. This curve, and the curve EF,
in their relation to each other, may be called Curves of Equal Transmission. Through
B draw the isothermal curve Q,Q,, intersecting the curve EF in A. Draw also any
other isothermal curve Q,Q,, intersecting EF in D and GH in C. Through A,B,C,D,
respectively, draw the four indefinitely-prolonged curves of no transmission, AK, in-
tersecting Q,Q; in d, BL, intersecting Q,Q, in ¢, CM, and DN. Conceive the whole
space between the isothermal curves Q,Q,, Q,Q., to be divided by other isothermal
curves, into a series of indefinitely narrow stripes, corresponding to equal indefinitely-
small variations of actual heat. Then, by the construction of the solution, the qua-
drilaterals cut from those stripes by the pair of curves EF, GH are all equal ; and so
also are the quadrilaterals cat from the stripes by the pair of curves of no transmis-
sion, AK, BL. Therefore the area ABCD is equal to the area ABcd. The indefinitely-
prolonged areas, MCDN, LcdK, are evidently equal; therefore, adding this pair
of equal areas to the preceding, the pair of indefinitely-prolonged areas LBAK,
MCBADN are equal. Subtracting from each of these areas the part common to
both, ABR, and adding to each the indefinitely-prolonged area KRCM, we find,
finally, that the indefinitely-prolonged areas KADN, LBCM are equal.

But the former of those areas (by Prop. I.) represents the mechanical equivalent of
the heat absorbed by the substance in passing from the actual heat Q, to the actual
heat Q, through a series of pressures and volumes represented by the co-ordinates of
the curve EF ; and the latter, the corresponding quantity for the curve GH ; there-

fore those curves are, with respect to each other, Curves of Equal Transmission, which
was required
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The algebraical expression of this resultis that the equation (15.) holds for any pair
of curves of equal transmission, as well as for a pair of curves of no transmission ; or,
in other terms, let F,, Fy, F, F;, be the thermo—dynamic functions for the curves of
no transmission passing through the four points where a pair of isothermal curves
cut a pair of curves of equal transmission : A, B being on the upper isothermal curve ;
C, D on the lower; A, D on one curve of equal transmission, B, C on the other : then

FymFa=Fe—Fp. . . . . . . . . . . . (16)

(13.) Prorosition V.—Turorem. The difference between the quantities of heat
absorbed by a substance, in passing from one given amount of actual heat to another, at
two different constant volumes, is equal to the difference between the two latent heats
of expansion in passing from one of those volumes to the other, at the two different
amounts of actual heat respectively, diminished by the corresponding difference between
the quantities of expansive power given out. ’

(Demonstration) (see fig. 9). Let QQ, be the isothermal curve of the higher
amount of actual heat; Q,Q, that of the lower. Let V,, V; be the two given

Fig. 9.

Va

volumes. Draw the two ordinates V,aA, V8B, and the four indefinitely-prolonged
curves of no transmission AM, am, BN, bn. The quantities of heat absorbed, in
passing from the actual heat Q, to the actual heat Q,, at the volumes V, and Vj, are
represented respectively by the indefinitely-prolonged areas MAam, NBén. Then
adding to each of those areas the indefinitely-prolonged area nbBAM (observing that
the space below the intersection R is to be treated as negative), we find for their
difference

NBbn—MAam=NBAM —nbBAam=(NBAM —nbam)— (VzBAV,—VgbaV,);

but NBAM and nbam represent the latent heats of expansion from V, to Vi, at the
actual heats Q, and Q, vespectively; and V;BAV, and V;baV, represent the power
given out by expansion from V, to V; at the actval heats Q, and Q, respectively ;
therefore the proposition is proved. Q.E.D.

This proposition, expressed symbolically, is as follows. AQ being the difference
MDCCCLIV. s
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of actual heat, Q,—Q,, let A (Q+S,) be the heat absorbed in passing from Q, to Q,

at the volume V,, and A (Q+S;) the corresponding quantity at the volume Vj;

AS, and ASj representing quantities of potential energy stored up in altering mole-
cular arrangement. Then v
B

A(SB_SA)=A(Q%_1)LA PaV. . . . . . (17)

(14.) Of Curves of Free Expansion.

In all the preceding propositions, the whole motive power developed by an elastic
substance in expanding is supposed to be communicated to external bodies; to a
piston, for example, which the substance causes to move, and to overcome the re-
sistance of a machine.

Let us now suppose that as much as possible of the motive power developed by
the expansion is expended in agitating the particles of the expanding substance itself,
by whose mutual friction it is finally reconverted into heat (as when compressed air
escapes freely from a small orifice) ; and let us examine the properties of the curves
which, on a diagram of energy, represent the law of expansion of the substance under
these circumstances, and which may be called Curves of free Expansion.

(15.) Prorosition VI—THEOREM. If from two points on a curve of free expansion
there be drawn two straight lines perpendicular to and terminating at the axis of ordi-
nates, and also two curves of no transmission, indefinitely prolonged away from the
origin of co-ordinates ; then the area contained between the curve of free expansion, the
two straight lines and the axis of ordinates, will be equal to the area contained between
the curve of free expansion, and the two indefinitely-prolonged curves of no transmission.

(Demonstration.) Let FF (fig. 10) be a curve of Fig. 10.

Free Expansion; G, H any two points in it; GVg ¥

HVy ordinates ; GPg, HPy lines perpendicular to OY ;
GM, HN curves of no transmission, indefinitely pro-
longed in the direction of X. Then the indefinitely-
prolonged area MGHN represents the heat which o4
would have to be communicated to the substance, if r

the motive power developed were entirely transferred .
to external hodies. while the area VoGHVy represents M
that motive power The excess of the rectangular area s

P ;HV,O above the area P;GV;0, is the power ne- Vo Vi x
cessarily given out by the elastic fluid in passing from a vessel in which the press-
ure is P; and volume Vg, to a vessel in which the pressure,is Py and volume V.. The
remainder of the expansive power, represented by the area PoGHPy, by the mutual
friction of the particles of the expanding substance, is entirely reconverted into heat,
and is exactly sufficient (by the definition of the curve of free expansion) to render
the communication of heat to the substance unnecessary ; from which it follows, that
this area is equal to the area MGHN. Q.E.D.
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The equation of a curve of free expansion is
d¥+PV)=0. . . . . . . . . . (174)

(16.) Corollary.—In fig. 11, the same letters being retained as in the last ﬁguré,
through G draw an isothermal carve Q,Q,, which the line PyH produced cuts in 4 ;

Fig. 11.
Y
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and from % draw the indefinitely-prolonged curve of no transmission, An. Then be-
cause, by the proposition just proved, the areas P,GHP, and MGHN are equal, it
follows that the indefinitely-prolonged area, MG/n, which represents the latent heat
of expansion at the constant actual heat Q,, from the volume V; to the volume V,,
exceeds PoGAhPy, by the indefinitely-prolonged area NH#in, which represents the
heat which the substance would give out, in falling, at the pressure Py, from the
actual heat Q, to the actual heat corresponding to the point H on the curve of free
expansion passing through G. Subtracting from this area the excess of the rectangle
P,V, above the rectangle P;V,, we obtain the excess of the area MGhn above the
area VoGAV,.

This conclusion may be thus expressed :—Let Q, be the actual heat for the point

H; —kﬂ the ratio of specific heat at the constant pressure Py to real specific heat ;
then

ys BAQ—P,V,+PeVo=(Qg~ D)f " Pav(for @=Q;

(18.)
. Q]KP PG
\otherW1se — ng TdQ+fPH VdP=Q,(F,—Fq). . . . . J

Equation (18.) may be used, either to find points in the curve of free expansion
which passes through G, when thé isothermal curves and the curves of no transmission
are known ; or to deduce theoretical results from experiments on the form of curves
of free expansion, such as those which have been for some time carried on by

Mr. Joure and Professor Wirriam TrHomsON.
Considered geometrically, these experiments give values of the area NH#zn.

The area PyGhPy= fPP °vap
’ H
s 2
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is known, in each case, from previous experiments on the properties of the gas em-
ployed ; and this area, by Proposition VI., is equal to the area MGAHN ; to which
adding the area NHkAn, ascertained by experiment, we obtain the area MGhn, that
is, the latent heat of expansion from the volume V; to the volume V,,at the constant
actual heat Q,, denoted symbolically by

d ("Va
H=Q1,7@jVG PdV=Q,(F,—Fy).

Now the problem to be solved is of this kind. We know the differences of actual
heat corresponding to a certain series of isothermal curves for the substance employed ;
and we have to ascertain the absolute quantities of actual heat corresponding to those
curves. Of the above expression for the area MGhAn, therefore, the factor Q, is to be
determined, while the other factor, being the difference between two thermo-dynamic
functions, is known ; and the experiments of Messrs. THomsoN and JouLk, by giving
the value of the product, enable us to calculate that of the unknown factor, and
thence to determine the point on the thermometric scale corresponding to absolute
privation of heat.

(17.) Prorostrion VII.—ProBLEm. To determine the ratio of the Apparent Specific
Heats of a substance at Constant Volume and at Constant Pressure, for a given Pressure
and Volume ; the isothermal curves and the curves of no transmission being known.

(Solution.) In fig. 12, let A be the point whose co-ordinates represent the given
volume V, and pressure P, ; QAQ the isothermal curve passing through A ; g q an-

Fig. 12.

G- e
VA VB -

other isothermal curve, very near to QQ. Through A draw the ordinate V,Aa parallel
to OY, cutting ggin a; drawalso AB parallel to OX, cutting g¢q in B. From A, a, B,
draw the three indefinitely-prolonged curves of no transmission AM, am, BN.

Then the heat absorbed in passing from the actual heat Q to the actual heat ¢, at
the constant volume V,, is represented by the indefinitely-prolonged area MAam,
while at the constant pressure P, it is represented by the area MABN. Let the curve
gq be supposed to approximate indefinitely to QQ. Then will the three-sided area
AaB diminish indefinitely as compared with the areas between the curves of no
transmission AM, am, BN ; and consequently the area MABN will approximate in-



MR. MACQUORN RANKINE ON THERMO-DYNAMICS. 133

definitely to the sum of the areas MAam and maBN; the ultimate ratio of which
sum to the area MAam is therefore the required ratio of the specific heats. Now
maBN, as gg approaches QQ, approximates indefinitely to the latent heat of the small
expansion Vz—V, at the actual heat Q, and this small expansion bears ultimately to
the increment of pressure P,—P,, the ratio of the subtangent of the isothermal curve
QQ to its ordinate at the point A.

The symbolical expression of this proposition is as follows :—Let 3Q denote the
indefinitely small difference of actual heat between the isothermal curves QQ, ¢g;
0V the indefinitely small variation of volume Vy;—V,; oP the indefinitely small

variation of pressure P,—P, ; %XBQ,, I—(kf- 9Q the quantities of heat required to produce

the variation 8Q, at the constant volume V,, and at the constant pressure P, re-
spectively.

S
Then W= 5
A
dpP b
Ky Ky dP Q( )]
: Tdav
> . . . (19)
Q
consequently Ez— +I§v %(;3 ;.
Tdv

>

equations agreeing with equation 31 of a paper on the Centrifugal Theory of Elasti-
city before referred to.

(18.) First Corollary.—As the curves AM, am, BN approximate indefinitely to-
wards parallelism, and the point a towards C, where am intersects AB, the ratio of
the areas MABN : MAam, approximates indefinitely to that of the lines AB: AC,
which are ultimately proportional, respectively, to the subtangents of the isothermal
curve and the curve of no transmission passing through A. Therefore,

Kp__ Subtangent of Isothermal Curve
Ky~ Subtangent of Curve of No Transmission’

(19.) Second Corollary.— Velocity of Sound. The subtangents of different curves
at a given point on a diagram of energy being inversely proportional to the increase of
pressure produced by a given diminution of volume according to the respective curves,
are inversely proportional to the squares of the respective velocities with which waves
of condensation and rarefaction will travel when the relations of pressure to volume
are expressed by the different curves. Therefore, if there be no sensible transmission of
heat between the particles of a fluid during the passage of sound, the square of the
velocity of sound must be greater than it would have been had the transmission of
heat been instantaneous in the ratio of the subtangent of an isothermal curve to that

(20.)
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of a curve of no transmission at the same point, or of the specific heat at constant
pressure to the specific heat at constant volume.

This is a geometrical proof of Larrace’s law for all possible fluids. The same law
is deduced from the Hypothesis of Molecular Vortices in the paper before referred to
on the Centrifugal Theory of Elasticity.

(20.) PropositioN VIII.—ProBrLEM. The isothermal curves for a given substance
being known, and the quantities of heat required to produce all variations of actual heat
at a given constant volume ; it is required to find any number of points in a curve of
no transmission passing through a given point in the ordinate corresponding to that
volume.

(Solution). In fig. 13, let V,A, be the given ordinate ; Q,Q,, A,Q, isothermal curves
meeting it in A, A,, respectively ; and let it be required, for example, to find the

Fig. 13.
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point where the curve of no transmission passing through A, intersects the isothermal
curve A,Q,. On the line V,A,A,, as an axis of abscissa, describe a curve CC, whose
ordinates (such as A,C,, a,c,, &c) are proportional to the specific heat of the substance
at the constant volume V,, and at the degrees of actual heat corresponding to the
points where they are erected, divided by the corresponding rate of increase of press-
ure with actual heat; so that the area of this curve between any two ordinates (e. g.
the area a,c,c,a,) may represent the mechanical equivalent of the heat absorbed in
augmenting the actual heat from the amount corresponding to the lower ordinate to
that corresponding to the higher (e. g. from the amount corresponding to a, to that
corresponding to a;).

Very near to the isothermal curve A,Q,, draw another isothermal curve a.g,, and
let the difference of actual heat corresponding to the interval between these curves
be 8Q. Draw a curve DD, such that the part cut off by it from each ordinate of the
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curve CC shall bear the same proportion to the whole ordinate which the difference
dQ bears to the whole actual heat corresponding to the ordinate; for example, let

AC,:AD,::Q,:3Q
AC,:AD,::Q,:3Q, &c.

Then draw an ordinate V;Bb, parallel to OY, cutting off from the space between
the isothermal curves A,Q,, @.¢,, a quadrilateral area A;Bba, equal to A,D,D,A,, the
area of the curve DD between the ordinates at A, and A,.

Then if the difference 3Q be indefinitely diminished, the point B will approximate
indefinitely to the intersection required of the isothermal curve A,Q, with the curve
of no transmission passing through A, ; and thus may any number of pomts in this
curve of no transmission be found.

(Demonstration.) Let A,M, be the curve of no transmission required. Let a,c,
a.c, be any two indefinitely-close ordinates of the curve CC, corresponding to the
mean actual heat Q,,. Let agm,, am, be curves of no transmission, cutting the
curves @,g,, A,Q,, so as to enclose a small quadrilateral area e. Then by the con-

struction, and Proposition 1.,
The area a,c,c,a,=the indefinitely-prolonged area m,a,a,m, ;
and by the first corollary of the second proposition and the construction,

the area e 3Q __area agdyd,a,

Mgllaligty Qg AYea (glqlyly
Therefore the area e==the area a,d,d,a, ; but the area A,D,D,A, is entirely made up of
such areas as a,d,d,a,, to each of which there corresponds an equal area such as e;
and when the difference 6Q is indefinitely diminished the area A,Bba, approximates
indefinitely to the sum of all the areas such as e, that is, to equality with the area
ADDA, QE.D.

The symbolical expression for this proposition is found as follows :—

The area A,D,D,A, ultlmately_BQJ‘Q dQ (for V=V,) ;

\'%
the area A,Bba, ultimately=3Q. VB(%dV (forQ=Q,) ;
A

divide both sums by 3Q and equate the results ; then
j‘ Vs gp
v, @V (frQ=Q,) _yQ odQ (for V=V,), . . . . (21)

which denotes the equality of two expressions for the difference, F,—F,, between the
thermo-dynamic functions for the curve of no transmission A,M, and for that passing
through the point A,.
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-~ When the relations between pressure, volume, and heat, for a given substance, are
known, the equation (21.) may be transformed into one giving the volume Vj corre-
sponding to the point at which the required curve of no transmission cuts the iso-
thermal curve of Q,.

Suppose, for instance, that for a perfect gas

PV=NQ sensibly; and '=1sensibly; . . . (22

N being a constant (whose value for simple gases and for atmospheric air and car-
bonic oxide is about 0'41) ; then the thermo-dynamic function for a perfect gas is
sensibly

F=hyp. log Q+N hyp.log V ; e o .. (224)
and equation (21.) gives, for the equation of a curve of no transmission,
Vy_ (Q\¥, '
= <ﬁi) S e . (23)
Py _ (Va7 ;
whence B, = V}) . (24.)

Equations (23.) and (24.) are forms of the equation of a curve of no transmission for
a perfect gas, according to the supposition of MayEr ; and are approximately true for
a perfect or nearly perfect gas on any supposition.
According to the hypothesis of molecular vortices, the relations between pressure,
volume, and actual heat for a perfect gas are expressed by these equations :—
N2Q '
PV=NQ+/; k_]+(1\Q_l_h)g, Coe e o (25)
where 4 is a very small constant, which is inversely proportional to the specific gra-
vity of the gas, and whose value, in the notation of papers on the hypothesis in ques-
tion, is .
h=NEz, T 1. W
= being the height, on the scale of a perfect gas thermometer, of the point of abso-

lute cold above the absolute zero of gaseous tension. Hence we find, for the thermo-
dynamic function of a perfect gas,

NA
F=hyp. log Q—xgq77+Nhyp.logV, . . . . . (26)

and for the equation of a curve of no transmission,

Do(@elma L

~ For all practical purposes yet known, these equations may be treated as sensibly
agreeing with equation (23.), owing to the smallness of % as compared with NQ.
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Secrron UL—OF THE EFFICIENCY OF THERMO-DYNAMIC ENGINES, WORKED BY THE
EXPANSION AND CONDENSATION OF PERMANENT GASES.

(21.) The Efficiency of a Thermo-dynamic Engine is the proportion of the whole
heat expended which is converted into motive power ; that is to say, the ratio of the
motive power developed to the mechanical equivalent of the whole heat consumed.

To determine geometrically the efficiency of a thermo-dynamic engine, it is neces-
sary to know its true indicatar-diagram ; that is to say, the curve whose co-ordinates
represent the successive volumes and pressures which the elastic substance working
the engine assumes during a complete revolution. This true indicator-diagram is
not necessarily identical in figure with the diagram deseribed by the engine on the,
indicator-card ; for the abscisse representing volumes in the latter diagram, include
not only the volumes assumed by that portion of the elastic substance, which really
performs the work by alternately receiving heat while expanding, and emitting heat
while contracting, in such a manner as permanently to transform heat into motive
power, but also the volumes assumed by that portion of the elastic substance, if
any, which acts merely as a cushion for transmitting pressure to the piston, under-
going, during each revolution, a series of changes of pressure and volume, and then
the same series in an order exactly the reverse of the former arder, so as to transform
no heat permanently to power.

The thermo-dynamic engines to be considered in the present section, are those in
which the elastic substance undergoes no change of condition. We shall in the first
place investigate the efliciency of those which work without the aid of the contrivance
called an “economizer” or “regenerator,” and afterwards, those which work with
the aid of that piece of apparatus.

(22.) Lemma.—ProBLEmM. To determine the true from the apparent indicator-dia-

‘gram of a Thermo-dynamic Engine; the portion of the elastic substance which acts
as a cushion being known, and the law of its changes of pressure and volume.

Fig. 14.

=
>
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(Solution.) In fig, 14, let abcd be the apparent indicator-diagram. Parallel to OX

draw Ha and Le, touching this diagram in a and c respectively ; then those lines
MDCCCLIV. T
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will be the lines of maximum and minimum pressure. Let HE and LG be the
volumes occupied by the cushion at the maximum and minimum pressures respectively :
draw the curve EG, such that its co-ordinates shall represent the changes of volume
and pressure undergone by the cushion during a revolution of the engine. Let
KFdb be any line of equal pressure, intersecting this curve and the apparent indicator-
diagram ; so that Kb, Kd shall represent the two volumes assumed by the whole
elastic body at the pressure OK, and KF the volume of the cushion at the same
pressure. On this line take . '
' bB=dD=KUF;
then it is evident that B and D will be two points in the true indicator-diagram ; and
in the same manner may any number of points be found.

The area of the true diagram ABCD is obviously equal to that of the apparent
diagram abcd. ~

(23.) Proposrrion IX.—ProBLeM. The true indicator-diagram of a thermo-dynamic
engine worked by the expansion and contraction of a substance which does not change its
‘condition, and without a regenerator, being given, it is required to determine the effi-
ciency of the engine. '

(Solution.) In fig. 15, let Aaa’ BHbA be the Fig. 15.
given true indicator-diagram. Draw two curves
of no transmission, AM, BN, touching this
figure at A and B respectively, and indefinitely
produced towards X. Then during the process
denoted by the portion Aea'B of the diagram
the elastic substance is receiving heat, and the
mechanical equivalent of the total quantity re-
ceived is represented by the indefinitely-pro- © : X
longed area MAaa'BN ; during the process denoted by the portion B&'6A of the dia-
gram, the substanceis giving out heat, and the mechanical equivalent of the total heat
given out is represented by the indefinitely-prolonged area MASYBN ; while the
difference between those areas, that is, the area of the indicator-diagram itself, re-
presents at once the heat which permanently disappears and the motive power given
out. The Erriciency of the engine is the ratio of this last quantity to the total heat
received by the elastic substance during a revolution ; that is to say, it is denoted
by the fraction,

area AadBibA
area MAad/BN*

To express this result symbolically, find the limiting points A and B by combining
the equation of the indicator-diagram with the general equation of curves of no trans-
mission, viz.— '

dF=0.

Then draw two indefinitely-close and indefinitely-prolonged curves of no trans-
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mission, abm, a'b'm', through any part of the diagram, cutting out of it a quadrilateral
stripe, abb'a’. Let Q, be the mean actual heat corresponding to the upper end aa' of
this quadrilateral stripe; Q,, that corresponding to the lower end, bb'.

The area of this indefinitely-narrow stripe representing a portion of the heat con-
verted into motive power, is found, according to the principles and notation of the
third corollary to Proposition II. and of Proposition III., by multiplying the differ-
ence between the actual heats by the difference between the thermo-dynamic functions
for the curves of no transmission that bound the stripe, thus :—

. E=(Q,—Q,)%F;
while the area of the indefinitely-prolonged stripe, maa'm/, representing part of the
total heat expended, is, according to the same principles,
oH,=QF;
and that of the indefinitely-prolonged stripe mbb'm', representing part of the heat
given out, is

dH,=Q.F.
Integrating these expressions we find the following results :—
F i
whole heat expended, H,=j‘ ? QdF;
Fy
. s
heat given out, H2=ji QdF;
Fa
F
motive power given out, E=Hl—-H2=j; B (Q—Q,)dF; > (28.)
A
Fs Q F
- 5 e, @0
efficiency, 0= [Ty ;
5 Q,dF
FA .J

formulee agreeing with equation (28.) of a paper on the Centrifugal Theory of Elasti-
city*; it being observed that the symbol F in the last-mentioned paper denotes, not
precisely the same quantity which is denoted by it in this paper, and called a thermo-
dynamic function, but the product of the part of that function which depends on
the volume, by the real specific heat of the substance.

(24.) First Corollary. Maximum Efficiency between given limits of Actual Heat.

When the highest and lowest limits of actual heat at which the engine can work
are fixed, it is evident that the greatest possible efficiency of an engine without a re-
generator will be attained when the whole reception of heat takes place at the
highest limit, and the whole emission at the lowest ; so that the true indicator dia-
gram is such a quadrilateral as is shown in fig. 6, and referred to in the second corol-
lary of Proposition IL ; bounded above and below by the isothermal curves denoting

* Trans. Roy. Soc. Edinb. vol. XX,
T2



140 MR. MACQUORN RANKINE ON THERMO-DYNAMICS.

the limits of actual heat, and, laterally, by any pair of curves of no transwmission.
The efficiency in this case, as has been already proved in various ways, is represented
by

E_Q-@q, .

= * oo
being the maximum efficiency possible between the limits of actual heat, Q, and Q..

~(25.) Second Corollary.—ProsLEM. To draw the diagram of greatest efficiency of

a Thermo-dynamic FEngine without a Regenerator, when the extent of variation of
volume is limited, as well as that of the variation of actual heat.

(Solution.) In fig. 16, let Q,Q,, Q,Q, be the iso- Fig. 16.
thermal curves denoting the limits of actual heat; ¥ ¢
V,, Vi the limits of volame. Draw the ordinates N\
V,DA, V;CB, intersecting the isothermal curves >
in the points A, B, C,D. Through A and C re- q,\ 9,
spectively draw the curves of no transmission, D
AM cutting Q,Q, in d, and CN cutting Q,Q, in b. %
Then will AbCd be the diagram required. An
analogous construction would give the diagram
of greatest efficiency when the variations of press- Va Va
ure and of actual heat are limited ; as in the Air-Engine proposed by Mr. JouLk.

(26.) Of the use of the Economizer or Regenerator in Thermo-dynamic Engines.

As the actual heat of the elastic substance which works a Thermo-dynamic Engine
requires to be alternately raised and lowered, it is obvious that unless these opera-
tions are performed entirely by compression and expansion, without reception or
emission of heat (as in the case of maximum efficiency described in the first corol-
lary of Proposition IX.), part, at least, of the heat emitted during the lowering of
the actual heat may be stored up, by being communicated to some solid conducting
substance, and used again by being communicated back to the elastic substance,
when its actual heat is being raised. The apparatus used for this purpose is called
an Economizer or Regenerator, and was first invented, about 1816, by the Rev.
Rosert StirLiNG.  In the Air-Engine proposed by him, it consisted of a sheet-metal
plunger surrounded by a wire grating or network ; in that of Mr. JAMES STiRLING,
it is composed of thin parallel plates of metal or glass through which the air passes
longitudinally, and in the engine of Captain Ericsson, of several sheets of wire
gauze.

A regenerator may be regarded as consisting of an indefinite number of strata,
with which the elastic substance is successively brought into contact; each stratum
serving to store up and give out the heat required to produce one particular inde-
finitely small variation of the actual heat of the working substance.

A perfect regenerator is an ideal apparatus of this kind, in which the mass of ma-
terial 18 so large, the surface exposed so extensive, and the conducting powers so

(29.)

o

O

]
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great, as to enable it to receive and emit heat instantaneously without there being
any sensible difference of temperature between any part of the regenerator and the
contiguous portion of the working substance ; and from which no appreciable amount
of heat is lost by conduction or radiation. In theoretical investigations it is con-
venient, in the first place, to determine the saving of heat effected by a perfect re-
generator, and afterwards to make allowance for the losses arising from the non-
fulfilment of the conditions of ideally perfect action; losses which, in the present
imperfect state of our knowledge of the laws of the conduction of heat, can be
ascertained by direct experiment only *.

(27.) ProrosiTion X.—ProBLEM. The true indicator-diagram of any thermo-dyna-
mic engine being given, to determine the amount of heat saved by a perfect regenerator.

(Solution.) Let ABCD (in fig. 17) be the given indicator-diagram. Across it
draw any two indefinitely-close isothermal curves; ¢,q, intersecting it in @, b; and
q.9, intersecting it in d, c. To the stripe between those two curves, speaking generally,

Fig. 17.

H

L)

a certain layer or stratum of the regenerator corresponds, which receives heat from
the working substance during the change from b to ¢, and restores the same amount
of heat during the change from d to . The amount of heat economized by the layer
in question is thus found. Through the four points @, b, c,d, draw the indefinitely-
prolonged curves of no transmission, ak, b/, cm, dn; then the smaller of the two
indefinitely-prolonged areas, lbem, kadn, vepresents the heat saved by the layer of
the regenerator corresponding to the indefinitely-narrow stripe between the isothermal
curves ¢,4, and ¢,q,.

Draw twe curves of no transmission, BL, DN, touching the diagram ; and through

* Tt is true that the problem of the waste of heatin the action of the regenerator is capable of a hypothetical
solution by the methods of Fourier and Poissow ; and I have by these methods obtained formulse which are
curious in a mathematical point of view ; but owing to our ignorance of the absolute values and laws of varia-
tion of the coefficients of conductivity contained in these formula, they are incapable of being usefully applied ;
and I therefore for the present refrain from stating them.
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the points of contact, B and D, draw the iscthermal curves, Q,Q, cutting the diagram
in A and B, and Q,Q, cutting it in C and D. Then because, during the whole of the
change from D through A to B, the working substance is receiving heat, and during
the whole of the change from B through C to D, emitting beat, the regenerator can
have no action above the isothermal curve Q,Q,, nor below the isothermal curve
Q.Q..

The whole of the diagram between these curves is to be divided by indefinitely-
close isothermal curves into stripes like abed ; and the saving of heat effected by the
layer of the regenerator corresponding to each stripe ascertained in the manner de-
scribed, when the whole saving may be found by summation or integration.

The symbolical expression of this result is as follows. Let the points of contact,
B, D, which limit the action of the regenerator, and the corresponding quantities of
actual heat, Q,, Q,, be found, as in Proposition IX., by means of the equation dF=0.

Then

Q +Q
the saving of heat =j‘Q Qcé'ngz‘sQl(% Q%.%)d@l e e o o (80)

. d.F .
care being taken, when —- has different values for the same value of Q, correspond-

ing respectively to the two sides of the djagram, to choose the smaller in performing
the integration.

(28.) Corollary.—TIt is evident that the regenerator acts most effectually, when the
outlines of the indicator-diagram from A to D, and from B to C, are portions of a
pair of curves of equal transmission (determined as in Proposition IV.); for then, if
the operation of the regenerator is perfect, the changes from B to C and from D to A
will be effected without expenditure of heat ; the heat transmitted from the working
substance to a given stratum of the regenerator, during any part such as be, of the
operation BC, being exactly sufficient for the corresponding part, da, of the operation

. .F
DA. In this case % for each value of Q between Q, and Q,, has the same value at

either side of the diagram.

In fact, the effect of a perfect regenerator is, to confer upon any pair of curves of
equal transmission the properties of a pair of curves of no transmission.

(29.) PropositioNn XI.—TueorEM. The greatest efficiency of a thermo-dynamic en-
gine, working between given limits of actual heat, with a perfect regenerator, is equal
to the greatest effficiency of a thermo-dynamic engine, working between the same limits
of actual heat, without a regenerator.

(Demonstration.) In fig. 18,let Q,Q,, Q,Q; be the isothermal curves denoting the
given limits of actual heat. Let AD, BC be a pair of curves of equal transmission
of any form. Then by the aid of a perfect regenerator, the whole of the heat given
out by the elastic substance during the operation BC may be stored up, and given
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out again to that substance in such a manner as to be exactly sufficient for the opera-
tion DA ; so that the whole consumption of heat in one revolution by an engine

Fig. 18.

¢ X

whose indicator-diagram is ABCD, may be reduced simply to the latent heat of ex-
pansion during the operation AB, which is represented by the indefinitely-prolonged
area MABN, AdM and Bc¢N being curves of no transmission. The efficiency of
such an engine is represented by

the area ABCD

the area MABN"

Now the maximum efficiency of an engine without a regenerator, working between

the same limits of actual heat, is represented by

the area ABed — Q,—Q,
the area MABN™ Q; °

and from the mode of construction of curves of equal transmission, described in Pro-
position IV., it is evident that

the area ABCD=the area ABcd;

hence the maximum efficiencies, working between the given limits of actual heat, Q,
and Q,, are equal, with or without a perfect regenerator. Q.E.D.

(80.) Advantage of a Regenerator.

It appears from this theorem that the advantage of a regenerator is, not to increase
the maximum efficiency of a thermo-dynamic engine between given limits of actual
heat, but to enable that amount of efficiency to be attained with a less amount of
expansion, and consequently with a smaller engine.

Suppose, for instance, that to represent the isothermal curves, and the curves of
no transmission, for a gaseous substance, we adopt the approximate equations already
given in article 20, viz.—

for the isothermal curve of Q, PV=NQ;

. . . oV, Q=5 __ /P, X . . . {8l)
for a curve of no transiission 71_..<§l) ‘(Px) ;
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and let us compare the forms of the indicator-diagrams without and with a regene-
rator, for a perfect air-engine, working between given limits as to actual heat, defined
by the isothermal curves Q,Q,, Q,Q; in fig 19.

Fig. 19.
Q

N

. ~
G >. 4

The amount of expansion at the higher limit of heat being arbitrary, let us suppose
it to be from the volume V, to the volume Vy, corresponding respectively to the
points A and B, and to be the same in all cases, whether with or without a regene-
rator.

The engine being without a regenerator, the diagram corresponding to the maxi-
mum efficiency has but one form, viz. ABcd, where Be, Ad are curves of no trans-
mission. Hence, in this case, there must be an additional expansion, from the volume
V5 to the volume

VC=VB.(%;)”§',. e 32)

for the purpose merely of lowering the actual heat of the air without loss of heat ;
and the engine must be made large enough to admit of this expansion, otherwise
heat will be wasted.

On the other hand, if the engine be provided with a perfect regenerator, any pair
of curves of equal transmission passing through A and B will complete a diagram of
maximum efficiency. The property of a pair of these curves being, as shown in Pro-
position IV., that the difference of their thermo-dynamic functions,

AF(: (%dV when Q is constant),

is the same for every value of Q, it follows, that for a gas, according to the approxi-
mate equation (23.), the property of a pair of curves of equal transmission is, that the
volumes corresponding to the intersections of the two curves by the same isothermal
curve, are in a ratio which is the same for every isothermal curve. ThusletV,,V,be
such a pair of volumes, then this equation

V, Vs
V=Ve - e e e (38)
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defines a pair of curves of equal transwmission. From this and from equation (31.), it
follows, that for such a pair of curves

ST e e e e e e e e e e (34)

If one of the curves, or lines, of equal transmission is a straight line of equal
volumes, that is, an ordinate AD parallel to OY, then ‘the other is an ordinate BC,
parallel to OY also. Then ABCD is the diagram of maximum efficiency for an air-
engine with a perfect regenerator, when the air traverses the regenerator without
alteration of volume; and by adopting this diagram, the addmonal expansmn from
V;: to V, is dispensed with.

If one of the curves, or lines, of equal transmission is a straight line of equal
pressures AD' parallel to OX, then the other also is a straight line of equal pressures
BC'. The diagram thus formed, ABC'D/, is suitable, when the air, as in EricssoN’s
engine, has to traverse the regenerator without change of pressure.

It must be observed, that no finite mass, or extent of conducting surface, will
enable a regenerator to act with the ideal perfection assumed in Proposmons X. and
XI., and their corollaries.

meg to the want of a general investigation of the theory of the action of the
regenerator based on true principles, those who have hitherto written respecting it
have either exaggerated its advantages or unduly depreciated them. From this re-
mark, however, must be excepted a calculation of the expenditure of heat in Captain
Ericsson’s engine, by Professor BArNarDp of the University of Alabamax.

(31.) General Remarks on the preceding Propositions.

The eleven preceding propositions, with their corollaries, are the geometrical re-
presentation of the theory of the mutual transformation of heat and motive power,
by means of the changes of volume of a homogeneous elastic substance which does
not change its condition. All these propositions are virtually comprehended in the
first two, of which, perhaps, the most simple enunciations are the following :—

I. The mechanical equivalent of the heat absorbed or given out by a substance in
passing from one given state as to pressure and volume to another given state, through
a series of states represented by the co-ordinates of a given curve on a diagram of
energy, is represented by the area included between the given curve and two curves
of no transmission of heat drawn from its extremities, and indefinitely prolonged in
the direction representing increase of volume.

IL. If across any pair of curves of no transmission on a diagram of energy there
be drawn any series of isothermal curves at intervals corresponding to equal differ-
ences of actual heat, the series of quadrilateral areas thus cut off from the space be-
tween the curves of no transmission will be all equal to each other.

These two propositions are the necessary consequences of the definitions of iso-

* Silliman’s Journal, September 1853.
MDCCCLIV. U
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thermal curves and curves of no transmission on a diagram of energy, and are the
geometrical representation of the application to the particular case of heat and ex-
pansive power, of two axioms respecting Energy in the abstract, viz.—

I. The sum of Energy in the Universe is unalterable.

II. The effect, in causing Transformation of Energy, of the whole quantity of
Actual Energy present in a substance, is the sum of the effects of all its parts.

The application of these Axioms to Heat and Expansive Power virtually involves
the following Definition of Expansive Heat :—

Expansive Heat is a species of Actual Energy, the presence of which in a substance
affects, and in general increases, its tendency to expand.

And this definition, arrived at by induction from experiment and observation, is
the foundation of the theory of the expansive action of heat.

Secriony IV.—OF TEMPERATURE, THE MECHANICAL HYPOTHESIS OF MOLECULAR VOR-
TICES, AND THE NUMERICAL COMPUTATION OF THE EFFICIENCY OF AIR-ENGINES.

(32.) In order to apply the propositions of the preceding articles to existing sub-
stances, besides experimental data sufficient for the determination, direct or indirect,
of the isothermal curves and curves of no transmission, it is necessary also to know
the relation, for the substance in question, between the quantity of heat actually pre-
sent in it under any circumstances, and its Temperature ; a quantity measured by the
product of the.pressure, volume, and specific gravity of a mass of perfect gas, when
in such a condition that it has no tendency to communicate heat to, or to abstract
heat from, the substance whose temperature is ascertained.

The nature of the relation between heat and temperature has been discussed in
investigations already published, as a consequence deducible from a hypothesis re-
specting the molecular constitution of matter, with the aid of data supplied by the
experiments of Messrs. THomsoN and JouLe and of M. REGNaurr. Nevertheless it
seems to me desirable to add here a few words respecting the grounds, independent
of direct experiment, for adopting the hypothesis of molecular vortices as a probable
conjecture, the extent to which, by the aid of this hypothesis, the results of expe-
riment were anticipated, and its use, in conjunction with the results of experiment,
as a means of arriving at a knowledge of the true law of the relation between tem-
peratures and total quantities of heat.

To introduce a hypothesis into the theory of a class of phenomena, is to suppose that
class of phenomena to be, in some way not obvious to the senses, constituted of
some other class of phenomena with whose laws we are more familiar. In thus fra-
ming a hypothesis, we are guided by some analogy between the laws of the two classes
of phenomena : we conclude, from this analogy of laws, that the phenomena them-
selves are probably alike. This act of the mind is the converse of the process of
ordinary physical reasoning; in which, perceiving that phenomena are alike, we
.conclude that their laws are analogous. The results, however, of the latter process
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of reasoning may be certainly true, while those of the former can never be more
than probable ; for how complete soever the analogy between the laws of two classes
of phenomena may be, there will always remain'a possibility of the phenomena
themselves being unlike. A hypothesis, therefore, is incapable of absolute proof;
but the agreement of its results with those of experiment may give it a high degree
of probability.

The laws of the transmission of radiant heat are analogous to those of the propaga-
tion of a transverse oscillatory movement. The laws of thermometric heat are analo-
gous to those of motion, inasmuch as both are convertible into mechanical effect ;
and motion, especially that of eddies in liquids and gases, is directly convertible into
heat by friction. If, guided by these analogies; we assume as a probable hypothesis
that heat consists in some kind of molecular motion, we must suppose that thermo-
metric heat is such a molecular motion as will cause bodies to tend to expand ; that
is to say, a motion productive of centrifugal force. Thus we are led to the hypo-
thesis of Molecular Vortices.

This hypothesis, besides the principles already enunciated, of the mutual trans-
formation of heat and motive power in homogeneous substances, leads to the follow-
ing special conclusion respecting the

RevaTioN BETWEEN TEMPERATURE AND ActuaL HEAT:—

When the temperature of a substance, as measured by a perfect-gas thermometer,
rises by equal increments, the actual heat present in the substance rises also by equal
increments :—

a principle expressed symbolically by the equation

Q=k(r—=), . . . . . . . . . . (85)
where Q is the actual heat in unity of weight of a substance, ¢ its temperature,
measured from the absolute zero of gaseous tension, » the temperature of absolute
cold, measured from the same point, and & the real specific heat of the substance,
expressed in terms of motive power*.

The enunciation of this law was originally an anticipation of the results of ex-
periment ; for when it appeared, no experimental data existed by which its soundness
could be tested.

Since then, however, one confirmation of this law has been afforded by the expe-
riments of M. REeNaurr, showing that the specific heat of atmospheric air is sensibly
constant at all temperatures and at all densities throughout a very great range ; and
another, by the experiments of Messrs. JouLe and THomsoN referred to in Proposi-
tion VI., on the thermic -phenomena of gases rushing through small apertures,
which not only verify the theoretical principle, but afford the means of computing
approximately the position = of the point of absolute cold on_ the thermometric
scale.

* The hypothesis of MaYER amounts to supposing that k=0, or that the zero of gaseous tension coincides
with the point of absolute cold.

U2
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- According to this relation between temperature and heat, every isothermal curve
on a diagram of energy is also a curve of equal temperature. The isothermal curve,
for example, corresponding to a constant quantity of actual heat, Q, corresponds
also to a constant absolute temperature,

7:%-]—:&...........(36.)

The curve of absolute cold is that of the absolute temperature x.

Any series of isothermal curves at intervals corresponding to equal differences of
heat, correspond to a series of equidistant temperatures.

Hence we deduce

ProrosiTion XIL.—TuEoREM. Everything that has been predicated, in the proposi-
tions of the preceding articles, of the mutual proportions of quantities of actual heat
and their differences, may be predicated also of the mutual proportions of temperatures
as measured from the point of absolute cold, and their differences.

The symbolical expression of this theorem is, that in all the equations of the pre-
ceding sections, we may make the following substitutions :—

Q_ 7—x (Adord)Q (A3 0rd)s

T —x? Q T—x

(36 a.)

This theorem is not, like those which have preceded it, the consequence of a set
of definitions. It is a law known by induction from experiment, aided by a hypo-
thesis or conjecture with the results of which those of experiment have been found
to agree.

It is true that the theorem itself might have been stated in the form of a definition
of degrees of temperature ; but then induction from experiment would still have been
required, to prove that temperature, as measured in the usual way, agrees with the
definition.

By substituting symbols according to the above theorem, and making

0.Q=f.7,
the general equation of the expansive action of heat is made to take the following
form :— ,
A.W:A.H-j‘PdV:AQ+A.S=k.A¢+Af.¢+f{(¢_n)%—P}.dv, . (37)

which agrees with the equation deduced directly from the hypothesis of molecular
vortices, if we admit that

f.r:sz(hyp. log ,,+§>
_ (87 a.)
and consequently JS'.r=KkN. (;—%:)‘ .o

The differential form of equation (37.) is
d.W:d.H-PdV:dQ-;-d.s:der+{(¢_z)%§-P}dv, .. (38)
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where Ky=k+f .74 (7— "50[9 dav.
The expression for the Thermo-dynamic function denoted by F takes the form
1+¢.flr
FS“al+k s .. (39)

but a more convenient thermo-dynamic function, bearing the same relation to tem-
perature as reckoned from the point of absolute cold, which the function F does to
actual heat, is formed by multiplying the latter by the real specific heat ¥, thus :—

o=kF=(*g  (Pav, L o)
which, being introduced into the general equation, transforms it to
A.sz(f—z)dQ—deV. L (40a)

(33.) Of'the Numerical Computation of the Efficiency of Air- Engmes with or with-
out a perfect Regenerator.

The relation between temperature and heat being known, the preceding proposi-
tions can be applied to determine the efficiency, and other circumstances relative to the
working of Thermo-dynamic engines. To exemplify this application of the theory, let
the substance working the engine be atmospheric air, and let the real indicator-diagram
be such as to develope the maximum efficiency between two given absolute tempera-
tures =, and =,, being a quadrilateral, as in fig. 19, of which two sides are portions
of the isothermal curves of those temperatures, and the other two, portions of a pair
of curves of equal transmission, of such a form as may be best suited to the easy
working of the engine. Should these curves be curves of no transmission, a regenerator
may be dispensed with. In every other case a regenerator is necessary, to prevént
waste of heat; and for the present its action will be assumed to be perfect, as the
loss which occurs from its imperfect action cannot be ascertained except by direct
experiment.

In this investigation it is unnecessary to use formulee of minute accuracy; and for
practical purposes, those will be found sufficient which treat air as a perfect gas,
whose thermometric zero of pressure coincides with the point of absolute cold, viz.—

272°% Centigrade, or

] below melting ice ;*
490°} Fahrenheit,

* This estimate of the position of the point of absolute cold is to be considered as merely approximate,
recent experiments and calculations having shown that it may possibly be too high by about 14° Centigrade.
It is, however, sufficiently correct for all practical purposes.—W. J. M. R., June 1854.
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whose real specific heat is equal to its specific heat at constant volume, being

% 2346 feet of fall per Centigrade degree, or
N V—{130'3 feet of fall per degree of Fahrenheit ;

whose specific heat at constant pressure (as determined by M. REeNauLT) is 0:238 X
the specific heat of liquid water, or

330°8 feet of fall per Centigrade degree, or
*71183'8 feet of fall per degree of Fabrenheit ;

the ratio of these two quantities being

-15-‘3__1+N—141

as calculated from the velocity of sound.

The volume occupied by an avoirdupois pound of air, at the temperature of melting
ice, under the pressure of one pound on the square foot, as calculated from the ex-
periments of M. REGNAULT, is

P,V,=26214'4 cubic feet.

This represents also the length in feet of a column of air of uniform density and
sectional area, whose weight is equal to its elastic pressure on the area of its section
at the temperature of melting ice.

It will be found convenient, in expressing the temperature, as measured from the
point of absolute cold, to. make the following substitution :—

T—%:T"'I-'.[‘O, o . e e+ e e e s e (41.)

where T represents the temperature as measured on the ordinary scale from the tem-
perature of melting ice, and T, the height of the temperature of melting ice above
the point of absolute cold, as already stated.

PV,

Then we have Ni=—+ e C S

According to these data, the equation of the isothermal curve of air for any tem-
perature T is
T+T0

PV=P\V,. =NR(T+T). . . . . . . (42)
The thermo-dynamic functions are—
for quantities of actual heat, F=hyp. log Q+N hyp.logV;

for temperatures, ®=KF+constant=K,{hyp. log (T+T,)+N hyp. log V} (42 4.)
PV, '
=Ky hyp.log (T+T,) +—TO—.hyp. logV; f
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consequently the equation of any curve of no transmission is
®=constant ; otherwise

(T+T,).V" =const.; or P.V*"=const.; or { ... (43)
N
(T+T,).P ™N=constant ;

N
TN=0 2908.

in which N=041, 14+N=1"'41, i

The maximum possible efficiency between any two temperatures T, and T, is given
by the universal formula,

_H,-H, T,-T,
=TH, —T,4T

=

(44.)

The latent heat of expansion of unity of weight of air at a given constant tempera-
ture T,, from the volume V, to the volume Vj, is sensibly equivalent simply to the
expansive power developed, being given by the following formula :—

H,=(T,+T).(®y— @) =P,V "2 hyp. log v2 _—_j' PdV. . . (45.

Let V, and V, be the volumes corresponding to the points at which any isothermal
curve intersects a given pair of curves of no transmission, or of equal transmlssmn

then the ratio of these volumes,
v,
\ B 10D

is constant for every such pair of points on the given pair of curves; because the dif-
ference of the thermo-dynamic functions, which is proportional to the logarithm of
this ratio, is constant.

Hence, if in fig. 19 A, two isothermal curves, Fig. 19 a.
T,T,, T,T,, be the upper and lower boundaries of ¥
an indicator-diagram of maximum energy for an
air-engine, AaD an arbitrary curve bounding the
diagram at one side, and B the other limit of
the expansion at the higher temperature; the
fourth boundary, being a curve of equal trans-
mission to AaeD, may be described by this con-
struction ; draw any isothermal curve ## cutting
AaD in a, and make

<}

A

Va:Ve:e: VeV o o 0 0 0 0 0 0o (47)
then will & be a point in the curve sought, B4C.
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Suppose, for example, that the form assumed for AeD is a hyperbola, concave
towards OY, and having the following equation,—

FP,,=‘—§'—_“—V'G,..'.........(47A.)

. . . . ‘ . vV
in which « and 3 are two arbitrary constants; and let the ratio vﬁ-:r.

Then must the curve BbC be another hyperbola concave towards OY, having for
its equation

Pb:rﬁ—-_lif";' .(47B)

The total expenditure of heat, per pound of air per stroke, in a perfect air-engine,
is the latent heat of expansion from V, to Vy, given by equation (45.).

The heat to be abstracted by refrigeration is the latent heat of compression from
V¢ to V5 and is found by substituting in the same equation, the lower temperature
T, for the higher temperature T,.

The indicated work, per pound of air per stroke, being the difference between those
two quantities, is found by multiplying the range of temperature by the difference of
the thermo-dynamic functions @ for the curves AD, BC, or by multiplying the latent
heat of expansion by the efficiency, and has the following value :—

Al Tl—TQ V
E=H,—H,=(T,—~T,).(Ps—P)=PV,.~7 hyplogg. ... (48)

The heat alternately stored up and given out by the regenerator (supposing it to
work perfectly) is to be computed as follows. Let the arbitrary manner in which
volume is made to vary with temperature, on either of the curves DaA, CbB, be ex-

pressed by an equation
‘ V=V.T,

then the thermo-dynamic function @ takes the form

®=Ky hyp. log (T+T,)+ 32 hyp. log ¥.T;

and the total heat stored up and given out, per pound of air per stroke, is

Ty d.® : PV T (T +T)¥.T
‘fn (T+T) 2 dT=K(T,~T,) + ,}0°T_( O tar L e)
For example, if, as before,
o
Pa:ﬁ_va
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and the heat stored up, per pound of air per stroke, is

T,+T0(I+—Pi‘v-)

K(T,—T,)+«.hyp. lo
v( yp. log T2+T(1+

. . (494.)

0V0>
(833 A.) Numerical Examples.

To illustrate the use of these formulee, let us take the following example :—
Temperature of receiving heat, T,=343°3 Centigrade.
T,+T,=615°8 Centigrade.
Temperature of emitting heat, T,= 85°4 Centigrade.
T,+T,=307°9 Centigrade.

. . . Vv
Ratio of Effective Expansion, VB =V.=p, =p, =3

From these data are computed the following results :—

Maximum Efficiency,—
3079 1
6158 2"
Heat expended, or latent heat of expansion,—

H,=P,V,x g,}.: = X hyp. log 2-_24[020 foot-pounds per pound of working air per stroke.

Heat abstracted by refrigeration,-—

H,=P,V,x 27; 5 X hyp. log 5=12010 foot-pounds per pound of working air per stroke.

Work performed,—

H,—H,=P)V, xz7g 5 X hyp. log%: 12010 foot-pounds per pound of working air per
stroke.

To exemplify the computation of the heat stored by a perfect regenerator, let it be
supposed, in the first place, that the indicator-diagram resembles ABC'D' in fig. 19,
where the curves of equal transmission are represented by a pair of lines of constant
pressure. Then the heat to be stored is

K, (T,—T,)=101,800 foot-pounds per pound of working air per stroke.

Secondly, let the diagram resemble ABCD in fig. 19, where the curves of equal
transmission are represented by a pair of lines of constant volume. Then the heat
to be stored is

K(T,—T,)=72,233 foot-pounds per pound of working air per stroke.

Thirdly, let the curves of equal transmission, as in a recent example, be hyperbolas,

concave towards OY, and let the arbitrary constant « have the following value,—
a=P,V,=262144 foot-pounds;
MDCCCLIV. X
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then the heat to be stored, according to equation (49 a.), is
8883 N
72,233+26214'4 X hyp. log z2"=72,233+4 11,157
=83,390 foot-pounds per pound of working air per stroke.

The large proportions borne by these quantities to the whole heat expended, show
the importance of efficient action in the regenerator to economy of fuel. The quan-
tity of heat to be stored, however, becomes smaller, as the curves of equal transmis-
sion approach those of no transmission, for which it is null. The additional expan-
sion requisite in this last case is found by the following computation,—

1 1
vi=ve=(rr) =2 =,
the result of which shows the. great additional bulk of engine required, in order to
obtain the maximum efficiency without a regenerator.

Supposing one pound of coal, by its combustion, to be capable of communicating
heat to the air working in an engine corresponding with the above example, to an
amount equivalent to

6,000,000 foot-pounds
(an amount which would evaporate about 7 lbs. of water), the maximum theoretical
duty of one pound of such coal in such an engine, without waste of heat or power,

would be
3,000,000 foot-pounds,

corresponding to
3,000,000

. . . . .3
W=249 strokes of a pound of working air, with the effective expansion 3.

2

The deductions to be made from this result in practice must of course be deter-
mined by experience.

Secrion V.—PROPOSITIONS RELATIVE TO A HETEROGENEOUS MASS, OR AGGREGATE,
ESPECIALLY IN VAPOUR-ENGINES.

(34.) The Heterogeneous Mass to which the present investigation refers, is to be
understood to mean an Aggregate of portions of different ingredients, in which each
ingredient occupies a space, or a number of spaces, of sensible magnitude.

The results arrived at are not applicable to mixtures in which there is a complete
mutual diffusion of the molecules of the ingredients, so that every space of appre-
ciable magnitude contains every ingredient in a fixed proportion. A mixture of this
kind, when the relations between its pressure, volume, heat, and temperature are
known, may be treated, so far as regards the expansive action of heat, as a homo-
geneous substance.

The ingredients of an aggregate are heterogeneous with respect to the expansive
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action of heat, when either their specific heats, or their volumes for unity of weight
at a given pressure and temperature, or both these classes of quantities, are different.

Hence a portion of a liquid, and a portion of its vapour, enclosed in the same
vessel, though chemically identical and mutually transformable, are heterogeneous,
and are to be treated as an aggregate, with respect to the expansive action of heat.

M. Crausius and Professor WiLLiam THomson have applied their formulee to the
aggregate composed of a liquid and its vapour, and have pointed out certain relations
which must exist between the pressure and deunsity of a liquid and its vapour, and
the latent heat of evaporation.

I shall now apply the geometrical method of this paper to the theory of the ex-
pansive action of heat in an aggregate, especially that consisting of a liquid and its
vapour. The total volumes are, for the present, supposed not to be large enough to
exhibit any appreciable differences of pressure due to gravitation.

(85.) Prorosirion XIII.—TaeoreM. In an aggregate in equilibrio, the pressure of
each ingredient must be the same ; and the quantity of heat in unity of weight of each
ingredient must be inversely proportional to its real specific heat; that is to say, the
temperature must be equal.

The following is the symbolical expression of this theorem, with certain conclusions
to which it leads.

Let #—x be the common temperature of the ingredients, as measured from the
point of absolute cold ;

P their common pressure ,

n,, n,, 7y, &c. their proportions by weight, in unity of weight of the aggregate ;

v,, Uy, ¥y, &c. the respective volumes of unity of weight of the several ingredients ;

V the volume of unity of weight of the aggregate ;

¢ Gas s> &c. the respective quantities of actual heat in unity of weight of the
several ingredients ;

k., &, &, &c. their respective real specific heats ;

Q the quantity of heat in unity of weight of the aggregate ;

® a thermo-dynamic function for the aggregate.

Then these quantities are connected by the following equations :—

Sa=l. . . . . . . oo o . (50)
V==.nv. T (-1 )
f-x:%:%:%: &e. . . . . .00 (52)
Q==ng=(r—x).22K. . . . . . . . . (53)
2 k41 dP
(D=5‘“J(;__,{:‘T‘)-d"+j'£-dv~ e e e e . (54)

It is evident that all these equations hold whether the proportions of the ingre-
X 2
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dients n,, &c. are constant, as in an aggregate of chemically distinct substances, or
variable, as in the aggregate of a liquid and its vapour.

Let 3H be the heat which disappears in consequence of a small expansion of the
aggregate at constant temperature represented by

V=3, . . . . . . . . . . (55)

du representing any one of the parts arising from the changes undergone by the dif-

ferent ingredients, of which the whole expansion of the aggregate, 8V, is made up.
Then

aH—_—z{(T_z)‘g.Bu}; . (86)
but the pressure P is the same for every ingredient, as well as the temperature ; there-
fore the factor (r—x) % is the same for every ingredient, and consequently for the
whole aggregate ; that is to say,

M= (r—n) R WV=(rmaP®. . . . . . . (57

This equation shows, that the relation of femperature to the mutual transformation
of heat and expansive power is the same in an aggregate as in a homogeneous
substance.

Consequently, if we define Isothermal Curves for an Aggregate to be Curves of
Constant Temperature, we arvive at the following conclusion :—

ProrosiTion XIV.—THEOREM. Isothermal curves on the diagram of energy of an
Aggregate, have the same properties, with reference o the mutual transformation of
Heat and Expansive Power, with those on the diagram of energy of a homogeneous
substance.

It is unnecessary to enunciate separately a similar proposition for curves of no
transmission ; for the demonstration of Proposition I., on which all their properties
depend, is evidently applicable to an aggregate constituted in any manner.

Hence it appears, that if the isothermal curves for an aggregate be drawn accord-
ing to the above definition, all the propositions proved in this paper respecting homo-
geneous substances become true of the aggregate.

(36.) ProrositioN XV.—TrEorREM. Every Isothermal line for an aggregate of a
liquid and its vapour, is a straight line of equal pressure, from the volume corresponding
to complete liquefaction to the volume corresponding to complete evaporation.

This is a fact known by experiment. The Theorem is equivalent to a statewnent,
that the pressure of a liquid and its vapour in contact with each other, is a function
of the temperature only.

Corollary.—THEOREM. At any given temperature, the volume of an aggregate of
liquid and vapour is arbitrary between and up to the limits of total liquefaction and
total evaporation.

To express this symbolically, let P be the pressure of an aggregate of liquid and
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vapour corresponding to the absolute temperature =; and, unity of weight being the
quantity of the aggregate under consideration, let » be the volume corresponding to
complete liquefaction, v' that corresponding to complete evaporation, and V the actual
volume at any time; let » be the proportion of liquid, and 1—n= that of vapour, cor-
responding to the aggregate volume V ; then

V=nv4+(1—n), . . . . . . . . . (58)
and V may have any value not less than » nor greater than ¢/, while P and = remain
constant ; the proportion of liquid, », being regulated according to the foregoing
equation.

(37.) Prorosition XVI.—Prosrem. The density of a liquid and of its vapour,when
in contact at a given temperature, being given, and the isothermal lines of the aggregate ;
it is required to determine the latent heat of evaporation of unity of weight of the fluid.

(Solution.) The densities of the liquid and of its vapour, are respectively the re-
ciprocals of the volumes of total liquefaction and total evaporation of unity of weight,
above-mentioned. In fig. 20, let the abscissee Ov, Ov' represent these volumes, and
the equal ordinates, vA, ¢'B, the pressure corresponding to the given temperature :

Fig. 20.

i
Y

‘N

\\_.
M

O il =2

so that AB parallel to OX is the isothermal line ot the aggregate for that tempera-
ture. Suppose two curves of no transmission, AM, BN, to be drawn from A and B
respectively, and indefinitely prolonged towards X ; then the indefinitely-prolonged
area MABN represents the mechanical equivalent of the latent heat sought; and
this area is to be computed in the following manner. Draw a second isothermal
line ab indefinitely near to AB, at an interval corresponding to the indefinitely-small
difference of temperature dr; then, ultimately,

dr : 7—x :: area ABba : area MABN;

or, symbolically,

L=latent heat of evaporation:(r-—z)%(v’—v). e (89)

This is simply the application of Propositions I. and II. to the aggregate of a liquid
and its vapour, mutatis mutandis.
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(Remarks.)—The existence of a necessary relation between the density, pressure,
and temperature of a vapour and its liquid in contact, and the latent heat of evapo-
ration, was first shown by Carnor. If for #—=z in the preceding equation be substi-

. . . . , . ,
tuted, according to Professor THoMsoN’s notation, p J being “ JouLE’s equivalent”

and u “ CarNOT’s function,” the equation is transformed into that deduced by Messrs.
Crausius and TromsoN from the combination of CarNOT’s theory with the law of the
mechanical convertibility of heat.

(38.) Corollary.—The volume occupied by unity of weight of vapour at saturation
may be computed from its latent heat of evaporation by means of the inverse for-
mula,—

11’——v=——~——7~p; (60)

the latent heat, L, being of course always stated in units of motive power.

The want of satisfactory experiments on the density of vapours of any kind, has
hitherto prevented the use of the direct formula (59.).

It is otherwise, however, with the inverse formula (60.), at all events in the case of
steam ; for, so far as we are yet able to judge, the experiments of M. REeNauLT have
determined the latent heat of evaporation of water with accuracy throughout a long
range of temperature.

M. Cravusius, applying to those experimental data a formula founded on the suppo-
sition of MayER (that is to say, similar to the above, with the exception that x is
supposed=0), has calculated the densities of steam at certain temperatures, so as to
show how much they exceed the densities calculated from the pressures and tempe-
ratures, on the supposition that steam is a perfect gas. From these calculations he
concludes, that either the supposition of MavYER is erroneous, or steam deviates very
much, at high densities, from the condition of a perfect gas.

In the following table, the value of « is supposed to be 21 Centigrade ; and use
has been made of the formula for calculating the pressure of steam and other vapours
at saturation, first published in the Edinburgh New Philosophical Journal for July
1849, viz.—

logP=a————§. e e e e e e e e (61.)

This table exhibits, side by side, the volume in cubic feet occupied by one pound
avoirdupois of steam, at every twentieth Centigrade degree from —20° to 4260°
(that is, from —4° to 4500° Fahrenheit) :—first, as extracted from a table for com-
puting the power of steam-engines, in the Transactions of the Royal Society of Edin-
burgh, vol. xx., which was calculated on the supposition that steam is a perfect gas ;
and secondly, as computed by equation (60.) from the latent heat of steam as deter-
mined by M. ReeNavrtr. The excess of the former quantity above the latter is also
given in each case, with its ratio to the second value of the volume.
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For convenience’ sake, a column is added containing the pressures of steam corre-
sponding to the temperatures in the table, in pounds per square foot.

Table of Computed Volumes of 11b. avoirdupois of Steam.

Temperature. Volume supposed [Volume computed| .. Ratio of differ-
P g ‘i’e:f:ctp(gas. from Latent ]I){eat. Difference. ence to lesser Pressure.
Fahrenheit. ICentigrade. value of volume.
Deg. Deg. Cubic feet.: Cubic feet. Cubic feet. 1b. per square foot.
— 4 —20 15757 15718 39 00025 2:4799
+ 32 0 3390-4 33772 13-2 00039 12:431
68 +20 936-81 934:50 231 0:0025 48265
104 40 314-88 31356 1-32 0:0042 153-34
140 60 12365 12263 102 00083 415°33
176 80 5505 54°19 0-86 00158 988:67
212 100 27166 26-478 | 0688 0-0260 21164
248 120 14+596 14076 0:520 0-0369 41493
284 140 8:420 8:004 0:416 0:0502 75570
320 160 5158 4-828 0:320 0:0661 12931
356 180 3326 3071 0-255 0:0830 20979
392 200 2:241 2:033 0:208 0:1023 32512
428 220 1°568 1°396 0°172 0-1232 48425
464 240 1-134 0°990 0-144 0:1455 69680
500 260 0:843 0-722 0°121 0-1676 97275
Col. (1)| (2.) (3.) (4) (52 (6.) 1.

The fourth column of this table could easily be extended and filled up, so as to

replace the column of volumes of steam for every fifth Centigrade degree in the table
previously published ; but it would be unadvisable to do so at present, for the follow-
ing reasons :—
First, the value of the constant x is still uncertain*.
Secondly, the results of M. ReeNauLt's direct experiments, on the density of steam
and other vapours, may soon be expected to appear.
Thirdly, it is possible that the values of the latent heat of evaporation of water, as
deduced from M. ReEGNauLT’S experiments, may still have to undergo some correction ;
“because, according to the theoretical definition of the latent heat of evaporation, the
liquid is supposed to be under the pressure of an atmosphere of its own vapour, which
atmosphere, as it increases in bulk, performs work of some kind, such as lifting a
piston ; whereas, in M. REeNaULT'S experiments, the water is pressed by an atmo-
sphere of mingled steam and air, whose united pressure is that corresponding to the
temperature of internal ebullition of the water ; so that the pressure of the steam alone
on the surface of the water, which regulates the superficial evaporation, may be less
than the maximum pressure corresponding to the temperature of ebullition ; -and this
steam, moreover, has no mechanical work to perform except to propel itself along
the passage leading to the calorimeter, and to agitate the water in the latter vessel.
Under these circumstances, it is possible, though by no means certain, that the latent

* It is probable that x may be found to be inappreciably small; in which case, the numbers in column (4.)
will have to be diminished to an extent varying from 1i5th to gl5th of their amount.
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heat of evaporation of water, as deduced from M. ReeNavLT’s experiments, may be
somewhat smaller than that which corresponds to the theoretical definition, especially
at high pressures ; and a doubt arises as to the precise applicability of the formulae
(59.) and (60.) to those experimental results, which cannot be solved except by direct
experiments on the density of steam.

Notwithstanding this doubt, however, the preceding table must be regarded as
adding a reason to those already known, for believing that saturated steam of high
density deviates considerably from the laws of the perfectly gaseous condition *.

(39.) Prorosrrion XVII.—ProsrLeEm. The isothermal lines for a liquid and its
vapour, and the apparent specific heat of the liquid at all temperatures being given, and
the expansion of the liquid by heat being treated as inappreciably small :—to determine
a curve of mo transmission for the aggregate, passing through a given point on the
ordinate whose distance from the origin approximately represents the volume of the
liquid.

(Solution.) In fig. 21, let Ov represent the volume of the liquid, assumed to be ap-
proximately constant for all temperatures under consideration ; let vA be an ordinate

Fig. 21.
Y
A T,
a, = Tg
-M
(¢}

parallel to OY, and let the heat consumed by the liquid in passing from the tempera-
ture corresponding to any point on this ordinate to that corresponding to any other
point, be known ; let the isothermal lines for the aggregate of liquid and vapour, all of
which are straight lines of equal pressure parallel to OX, such as AT,, aBT,, be known.
Then to draw a curve of no transmission through any point A on the ordinate vA,
the same process must be followed as in Proposition VIII.

To apply to this case the symbolical representation of Proposition VIIL., viz. equa-
tion (21.), let =, be the absolute temperature corresponding to the point A (that is; to
the isothermal line AT,); 7, that corresponding to any lower isothermal line aBT, ;
V,; the volame of the aggregate of liquid and vapour, corresponding to the point B

* Rvidence in favour of this opinion is afforded by the experiments recorded by Mr. C. W. Siemens (Civil
Engineer and Architect’s Journal), A remarkable cause, however, of uncertainty in all such experiments, has
lately been investigated by Professor Maenvus (PoeeeNDoRrrF's Annalen, 1858, No. 8), viz. a power which solid
bodies have of condensing, by attraction on their surfaces, appreciable quantities of gases.
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where the curve sought, AM, intersects the latter isothermal line ; K, the apparent
specific heat of the liquid ;—then making the proper substitutions of the symbols of
temperature for those of heat, and observing that the operation

Vs av
Va

is in this case equivalent to multiplication by V;—v, we have

AD="2(V,—v)(for r=r,)= f .. .. (62)

T—-%

being an equation between two expressions for the difference between the thermo-
dynamic functions @ for the curve AB, and for that which passes through a.
If the specific heat of the liquid is approximately constant, this equation becomes

dp
AP=-r(Vz—v)(for r=

(63.)

(40.) Corollary.—ProBLEM. The same data being given asin the preceding problem,
and the expansion of the liquid by heat neglected, a mass of liquid, having been raised
JSrom the absolute temperature =, to the absolute temperature 7., is supposed to be allowed
to evaporate partially, under pressure, without receiving or emitting heat, until its tem-
perature falls again to 7,, at which temperature it is liquefied under constant pressure
by refrigeration : it is required to_find the power developed.

(Solution.) The power developed is represented by the area of the three-sided dia-
gram of energy in fig. 21, ABa ; that is to say, by

ﬁ‘(v 0o d«r_ﬂ'&—dqﬂ C . 64

which, if K, is nearly constant, becomes

K. hyp log

Ty

dfr._ K, {(rl—x) (7y

}. . (65.)

(41.) Numerical Example.
Let one pound avoirdupois of water be raised, in the liquid state, from T,=40°
Centigrade, to T,=140° Centigrade. Then

r—x=T,+T,=140°+272}°=4121° Centigrade.
r,—a=T,+T)= 40°+2721°=312%° Centigrade.
The mean apparent specific heat of liquid water between those temperatures is
K.,=Ky (or JouLe’s equivalent) X 1:006=1398 feet per Centigrade degree ;

consequently the heat expended is equivalent to 139,800 foot-pounds.
MDCCCLIV. Y
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The other numerical data are,—
%—f_—) at 40° Centigrade=8'2075 lbs. per square foot, per Centigrade degree ;
v=mean volume of 1 1b. of liquid water = 0'017 cubic foot, nearly.

Let it be required to find, in the first place, Vy, the volume to which the water
must be allowed to expand by partial evaporation under pressure, in order that its
temperature may fall to 40° Centigrade ; and secondly, how much power will be de-
veloped in all, after the water has been totally reliquefied by refrigeration at constant
pressure, at the temperature of 40°,

First, by the equation (63.),

ap 4121
AP =7 (Va—v)=1398 X hyp. log 3757 =402624 ;

divide by %?:8'2075 ; then V3—v=49-055 cubic feet.
add v= 0017

Aggregate volume of water and steam at 40°, V,=49'072 cubic feet.

As the volume of one pound of steam at 40° Centigrade, according to the fourth
column of the table in article (38.), is 313'56 cubic feet, it appears from this calcu-
lation that somewhat less than one-sixth of the water will evaporate.

Secondly, it appears, from equation (65.), that after the water has been restored to
the liquid state by refrigeration at 40° Centigrade, the whole power developed, that
is to say, the area ABa, will be

1398 foot-pounds X {412°‘5-—312°‘5<1 +hyp. log g—g—:—g }

=1398 ft. Ib. x 10° Centigrade=13,980 ft. Ib.,

or one-tenth of the equivalent of the heat expended. The other nine-tenths constitute
the heat abstracted during the reliquefaction at 40° Centigrade.

This calculation further shows, that in order that one pound of water and steam
at 40° C. may be raised to 140° C. solely by compressing it into the liquid state, it
must occupy at the commencement of the operation the volume V3;=49'072 cubic
feet ; and that the power expended in the compression will be as follows :—

Foot-pounds.
Area of the curvilinear triangle ABa, fig. 21, as already calculated 13,980
Area of the rectangle aBVyo=P, (Vg—v)= . . . . . . . . 7,522

Total . . . . . . . . . . 21,502
(42.) ProrositioN XVIII.—ProsLEM. Having the same data as in the last proposi-
tion, it is required to draw a curve of no transmission through any point on the diagram
of energy for the aggregate of a liquid and its vapour.
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(Solution.) In fig. 22, through the given point B draw the straight isothermal line
AB corresponding to the absolute temperature =,, and catting the ordinate corre-
sponding to the volume of total liquefaction in A. Through A, according to the last
proposition, draw the curve of no transmission, ADM. Let EDC be any other
isothermal line, corresponding to the absolute temperature 7,, and cutting the curve
AM in D. Draw isothermal lines ab, edc at indefinitely small distances from AB,

Fig. 22.
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EDC respectively, corresponding to the same indefinitely small difference of tempe-
rature 0. Draw the ordinates V,dD, V3B ; then draw the ordinate V,cC at such a
distance from V,dD, that the indefinitely small rectangles DCcd, ABba shall be equal.
Then as the difference 3= is indefinitely diminished, C approximates indefinitely to a
point on the required curve of no transmission, BN.

This is Proposition I1I. applied to aggregates, mutatis mutandis.

The symbolical representation of this proposition is as follows :—let P, and P, be
the pressures of the aggregate of liquid and vapour corresponding respectively to the
temperatures =, and 7, ; then the following expressions for the difference between the
thermo-dynamic functions @ of the curves AM, BN are equal,

dP dp
AP="2(Ve—Vp)=—H(Vy—2). . . . . . . (66

(43.) Corollary. (Absolute Maximum Efficiency of Vapour-Engines.)
If the volume V; be that corresponding to complete evaporation at the tempera-
ture 7,, that is to say, if
V=2,
then the curve BCN will represent the mode of expansion under pressure, of vapour
of saturation in working an engine, and will be defined by the equation

R—0)
—Vpmm——— . . . . .. . .. (67,
Ve D D, ( /)

dr

Y 2
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If in this equation be substituted the value of ¥/—wv in terms of the latent heat of
evaporation at the higher temperature, given by equation (60.), it becomes

L,

Ve—Vp= (68.)

dF,’
(7, "")"“1?

In this case the diagram ABCD, fig. 22, is evidently that of a vapour-engine work-
ing with the absolute maximum of efficiency between the absolute temperatures 7,
and 7,. The heat expended at each single stroke, per unit of weight of fluid, is the
latent heat of evaporation at the higher temperature, or L, ; the area of the diagram
is given by the following equation,

E=(r,—7,)A0=

fl—'rg

Lo . e . ... (69)

Tl—)l

This is the mechanical power developed at each single stroke by a unit of weight
of the substance employed. The efficiency is represented by

E r—n

E:Tl_x, . . . . . . . . . . . (70')

being the expression for the maximum efficiency of thermo-dynamic engines in
general.

The conditions of obtaining this efliciency are the following :(—

First ; that the elevation of temperature from 7, to «,, during the operation repre-
sented by the curve DA on the diagram, shall be produced entirely by compression.
The volume at which this heating by compression must commence is given, according
to Proposition XVIL,, by the following equation :—

1 —x
VD= v+m‘ KL hyp. IOg :;—)L. . (71.)

dv

Secondly ; that the expansive working of the vapour shall be carried on until the
temperature falls, by expansion alone, to its lower limit; that is to say, until the
volume reaches the following value, obtained by adding together equations (68.)
and (71.) :—

Ty—%

1 ; L
Vc=v+l-i-1-,-;.{KLhyp.]ogfg_x+rl_'x}. .. (72)
o

(44.) Numerical example.

To exemplify this numerically, let the same data be employed as in article (41.),
the substance working being one pound avoirdupois of water. These data, with
some additional data deduced from them, are given in the following table :—
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At upper limit At lower limit
of Actual Heat.

Temperature in Centigrade Degrees :—

Above melting ice (T) . . . . . . . 140° 40°

Above zero of gaseous tension (7) . . . 4146 3146

Above absolute cold (r—x) . . . . . . 4125 3125
Pressure in pounds per square foot (P) . . . . 7557 153:34

’ » persquareinch . . . . . 525 1-065
Initial Volume of saturated steam, Vy=1v', = . . 8004 cubic feet per pound.

Latent Heat of Evaporation :—
In degrees, applied to one pound of liquid water 509>1 Centigrade.
In foot-pounds (L,) . . . . . . . . . 707,44536.

From these data are deduced the following results :—

Absolute Maximum Efficiency ; le%(%=0'2424.
Duty of one pound of water ; being the area
of the diagram ABCD . . . . . . 171,484'75 ft. Ib.
Volume at which the compression must com-
mence ; calculated as in art. (41.) . . V, =491 cubic feet per pound.

Volume to which the Expansion must be car-
ried ; calculated by equation (72.) . . V,=258"1 cubic feet per pound.
Ratio of Expansion . . . . . . . . =%=§?§%=32'25.

(45.) Liquefaction of Vapour by Expansion under Pressure.

In fig. 22, let the abscissee of the curve BFR indicate the volumes corresponding
to complete evaporation at the pressures denoted by its ordinates. For most known
fluids, a curve of no transmission BCN, drawn from any poirt B of the curve of com-
plete evaporation in the direction of X, falls within that curve; so that by expansion
of saturated vapour under pressure, a portion in most cases will be liquefied.

To ascertain whether this will take place in any particular case, and to what extent,
equation (60.), which gives the volume of unity of weight of saturated vapour at the
temperature 7,, is to be compared with equation (72.), which gives the volume at the
same temperature of unity of weight of an aggregate of liquid and vapour, which has
expanded under pressure from a state of complete evaporation at the temperature 7,.
The difference between the volumes given by these equations is as follows (neglecting,
as usual, the expansibility in the liquid state) :—

1 L L —
U’g—'VC =m{1:2-—2;_71—1x—KL'hyp. lOg :;_:} e e (73.)

dr
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That this quantity is almost always positive appears from the following consider-
ations. The latent heat of evaporation L is in general capable of being represented
approximately by an expression of this form :

L=a—b(z—zx). . . . . . . . . . (74)
(For water, a=796° Centigr. X Ky=1,106,122 ft. 1b.; 5==0'695 x K,=965'772 ft. Ib.
per Centigrade degree.)
Hence the second factor in equation (73.) is nearly equal to

a(r—7,)
(1—x).(7, —x)

KLhyplogT — .. ... (75)
Now

W T
.
're—x

Therefore the expression (75.) is positive so long as

s Ky, the specific heat of the liquid. . . . (754.)

For Water, this condition is fulfilled for all temperatures lower than 5231° Centi-
grade (at which r,—z=796° Centigrade) ; and there is reason to believe that it is
fulfilled also for other fluids at those temperatures at which their vapours can be
used for any practical purpose.

To determine the proportion of the fluid which is liquefied by a given expansion
under pressure, we have the following formula, deduced from equation (58.) :—

n:”’%_v". N ¢ D)

vy—v

As a numerical example, we may take the case of art. (44.), where saturated steam
at 140° Centigrade is supposed to be expanded under pressure until its temperature
falls to 40° Centigrade. The volume of one pound of water and steam at the end of
the expansion has already been found to be

V.=258"1 cubic feet.

While, according to the table in article (88.), the volume of a pound of steam at that

temperature is
v,=31356 cubic feet.

Consequently the fraction liquefied by the expansion is

__31356—258'1 5546
=31356—0016 313 544_0 177.

This conclusion was arrived at contemporaneously and independently, by M.
Crausius and myself, about four years since. Its accuracy was subsequently called
in question, chiefly on the ground of experiments, which show that steam, after_being
expanded by being  wire-drawn,” that is to say, by being allowed to escape through
a narrow orifice, is super-heated, or at a higher temperature than that of liquefaction
at the reduced pressure. Soon afterwards, however, Professor WiLLiam TaoMsoN
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proved that those experiments are not relevant against the conclusion in question, by
showing the difference between the free expansion of an elastic fluid, in which all the
power due to the expansion is expended in agitating the particles of the fluid, and is
reconverted into heat, and the expansion of the same fluid under a pressure equal to
its own elasticity, when the power developed is all communicated to external bodies,
such, for example, as the piston of an engine.

The free expansion of a vapour will be considered in the sequel.

(46.) Efficiency of a Vapour- Engine without heating by compression.

The numerical example of article (44.) sufficiently illustrates the fact, that the strict
fulfilment of the condition specified in article (43.), as necessary to the attainment
of the absolute maximum of efficiency of a vapour-engine, is impossible in practice.

Let us consider, in the first place, the effect of dispensing with the .process DA,
during which the fluid is supposed to have its high tempevature restored solely by
compression.

The effect of this modification is evidently, to add to the heat expended, that which
is necessary to elevate the temperature of the liquid from =, to =,, and to add to the
power developed an amount represented by the area ADE, fig. 22.

To express this symbolically, we have—

The Latent Heat of Evaporation at =,, as before . . L,
The additional heat expended (K, being the mean spe-
cific heat of the liquid between =, and 7,) . . . Ky(r,—m)

Total heat expended . . L, +Ky(r,—=) . (77.)

Then for the power developed, we have
T|—T

the area ABCD, as in article (43.), = * L,

Tl—)l.

the area ADE, as in Article (40), equation (65.),

=K, {(.,1_,5) - (.,2_..,,)<1+hyp- log:;‘“:j,:)}

the sum of which quantities is the total power developed. . . . . . . . (78)
The efficiency may be expressed in the following form :—

'rl —_—X Tl —Tg
Power developed _7,—1, KL('rQ—x){hyp. log To—% T —x }

Heat expended — 7, —x L, + Kp(r,—19) s (79)

an equation which shows at once how far the efficiency falls short of the absolute
maximum.
For a numerical example, the same data may be taken as in articles (41.) and (44.).

Then the heat expended, per pound of steam, is thus made up :—
Foot-pounds.
Latent Heat of Evaporation, as in art. (44.) . . . . . . 707,44536

Heat required to raise the water 100° C., as in article (41.) . 139,800°00
Total heat expended, per lb. of water . . . 847,245°36
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The power developed consists of,—
Foot-pounds.

The area ABCD, as in article (44.) . . . . . . . . . 171,48475
The area ADE, as in article (41.) . . . . . . . . . . 1398000
Total power developed, per Ib. of water . . 185,464'75
. 185,484*75 ,
Efficiency, m e e e e e e e s s =02189
Absolute maximum efficiency, as in art. (44.) . . . . 02424

Loss of efficiency by omitting the heating by compression 0'0235

or about one-tenth part of the absolute wmaximum.

(47.) Lfficiency of a Vapour-Engine with incomplete expansion.

It is in general impossible in practice to continue the expansion of the vapour down
to the temperature of final liquefaction ; and from this cause a further loss of efficiency
is incurred.

Let it be supposed, for example, that while the pressure of evaporation P, corresponds
to the line AB in fig. 23, and the pressure of liquefaction, P,, to the line EDC, the

Fig. 23.
A 7 B
Y
. P G
H i 2
\ P3 I c
B D\M N
o.

v q)i’ 'Vé vc X

pressure at which the expansion terminates, P,, corresponds to an intermediate line
HLG. Let vA, v\B, as before, be the ordinates corresponding to complete liquefac-
tion, and to complete evaporation, at the pressure P,.

Draw, as before, the curves of no transmission AM, BN, cutting HLG in L and G,
and EDC in D and C; draw also the ordinate V{KG, cutting EDC in K.

Then the expansion terminates at the volume V;, and ABGKE is the indicator-
diagram of the engine.

To find the power represented by this diagram, the area ALH is to be found as in
article (40.), the area ABGL as in article (43.), and the rectangle HGKE by mul-
tiplying its breadth Vo—» (found as in article (43.)) by its height HE, which is the
excess of the pressure at the end of the expansion, P,, above the pressure of final lique-
faction, P,.
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Hence we have the following formula for the indicated power developed, per unit
of weight of fluid evaporated.

E=area ABGKE=KL{(7,—)$) —(7y—2) (1 +hyp. log O _") } 4L, 2"

To—2% ' —x

1 (L - . (80.
+(P2—P3)d—PQ{T—l:‘—x+KLhyp.log:;_:}. Coe . (80.)

dr

The heat expended is of course L,+ K, (v,—;).

To illustrate this numerically, let the fluid be water; let the temperature of
evaporation be 140° Centigrade, and that of liqnefaction 40° as in the previous
examples ; and let the expansion terminate when the pressure has fallen to 100°
Centigrade.

The numerical data in this case are the following :—

1 2 3

During the At the end Duriné the
evaporation. of the expansion. final liquefaction.

Temperature in Centigrade degrees :—

Above meltingice . . . . . . 140° 100° 40°

Above zero of gaseous tension, r= . 414'6 374'6 3146

Above absolute cold,r—» . . . . 4125 3725 3125
Pressure, in lb. per square foot, P= . . 7557 21164 15334
Pressure, in 1b. per squareinch . . . . 525 147 1:065
‘%) in 1b. per sq. foot per Centigr.deg. . . 214°16 75617 8:2075

Initial Volume of steam in cubic feet per Ib. 8004
Latent Heat of Evaporation, L,, in foot-

pounds per pound of steam . . . 707,445'36
Total heat expended, in foot-pounds per 1b.
ofsteam . . . . . . . . . . 84724536

Mean specific heat of liquid water—
Between 40°and 140°C. . . . . 1398 feet of fall.
Between 100° and 140°C. . . . . 1409 feet of fall.

Applying equation (80.) to these data, we obtain the following results :—

Foot-pounds

Area ALH . . . . . . . . . . . . . . . . 2818
AreaABGL . . . . . . . . . . . . . . . 68601
Area HGKE = (P,—P,).(Vo—v) = 1963 lbs. per square

foot X 2458 cubicfeet . . . . . . . . . .=48,250

Total power developed by 1 1b. of water evaporated 119,669
MDCCCLIV. z



170 MR. MACQUORN RANKINE ON THERMO-DYNAMICS.

Foot-pounds.

. 119,669
Eﬂimency=§7—:2—43 e e e e e e e =0r1413

Efficiency computed in the last article . . . . . . 02189

Difference=loss of Efficiency by incomplete expansion . 00776

Ratio of Expansion%:é%g—gz?rw nearly.
If the power of the same engine be now computed by the tables and formulee pub-
lished in the 20th volume of the Transactions of the Royal Society of Edinburgh,
which were calculated on the supposition that steam is sensibly a perfect gas, the

following results are obtained :—

. . 24°60 .
Ratio of expansion, g7507=2'921=s in tables.

Foot-pounds.

“Action at full pressure” (P,V,in tables) . . . . . 63,633
“ Coefficient of Gross Action” (Z in tables) for the ex-
pansion 2°921 . . . . . . . . . . . . . 1-98
Gross Action (PV,Z) . . . . . . . 125,998 ft.lb.

Deduct for back-pressure of liquefaction P,V;=153'34x24'6. 3,772 ft. Ib.
Power developed per pound of steam . . 122,221 ft. b,

This result is too large by about one forty-seventh part; a difference to be ascribed
chiefly to the error of treating steam as a perfect gas. This difference, however, is not
of material consequence in computing theoretically the power of a steam-engine,
being less than the amount of error usually to be expected in such calculations.

(48.) My objectin entering thus minutely into the theory of the efficiency of vapour-
engines is, not so much to provide new formula for practical use, as to illustrate the
details of the mechanical action of heat under varied and complicated circumstances,
and to show with precision the nature and influence of the circumstances which
prevent the production, by steam-engines, of the absolute maximum of efficiency
corresponding to the temperatures between which they work.

To illustrate the results of these calculations with respect to the consumption of
coal, let it be assumed, as in article (33.), that each pound of coal consumed in the
furnace communicates to the water, or air, or other elastic substance which performs
the work, an amount of heat equivalent to 6,000,000 foot-pounds, which corresponds
to a power of evaporating, in round numbers, about seven times its weight of
water. Then the following calculation shows the theoretical indicated duty of one
pound of such coal, when the limits of working temperature are 140° and 40° Centi-
grade, at the absolute maximum of theoretical efficiency, and at the reduced efficiency
computed in the preceding article, on the supposition that the expansive working
ceases at the atmospheric pressure.
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. Effect per pound of coal
Efficiency. in foot-pounds.
Absolute Theoretical Maximum, being the same for every
perfect Thermo-dynamic Engine working between the
o__40°
same limits of temperature, ﬁ%gié‘;g_g, .............................. 0:2424 |..........en) 1,454,400
Deductions :—
For raising the temperature of the feed-water from 40°
to 140° Centigrade.....coovvvevviviivinneeiiniienninennnn. 0:0235 |............| 141,000
For stopping the expansive working at 3:07 times the
initial volume instead of 32 times .....c.....vivvveeneenna| 000776 |.oioo.... 465,600
0-1011 606,600
Reduced Efficiency and Effect «....ovviviieieniiniiniiiinonennnin] 001413 ...l 847,800

The last of these quantities corresponds to a consumption of about 2:34 1bs. of coal
per indicated horse-power per hour.

The conditions of the preceding investigation are very nearly fulfilled in steam-
engines with valves and steam-passages so large, and a velocity of piston so mode-
rate, that the pressure in the cylinder during the admission of the steam is nearly the
same with that in the boiler.

In many steam-engines, however, the steam is more or less “ wire-drawn ”; that is
to say, it has to rush through the passages with a velocity, to produce which there is
required a considerable excess of pressure in the boiler above that in the cylinder.
The power developed during the expansion of the steam from the pressure in the
boiler to that in the cylinder is not altogether lost ; for, as already stated in article
(45.), it is expended in agitating the particles of the steam, and is ultimately con-
verted into heat by friction, so that the steam begins its action on the piston in a
super-heated state ; and both its initial pressure and its expansive action are greater
than those of steam of saturation of the same density. The numerical relations of
the temperature, pressure, and density of super-heated steam are not yet known with
sufficient precision to constitute the groundwork of a system of exact formule repre-
senting its action. Some general theorems, however, will be proved in the sequel,
respecting super-heated vapours, which may be found useful when the necessary ex-
perimental data have been obtained. \

Calculation and experiment concur to prove, that in Cornish single-acting engines,
the initial pressure of the steam in the cylinders is very much less than the maximum
pressure in the boilers ; generally, indeed, less than one-half*. It is doubtful,'hdw-
ever, whether this arises altogether from wire-drawing in the steam-passages and
valves ; for when it is considered, that in such engines, even at their greatest speed,
the steam-valve remains shut during nearly the whole of each stroke, being opened
during a small portion of the stroke only, it may be regarded as probable, that the

* See Mr. PoLr’s work on the Cornish Engine, and article 36 of a paper on the Mechanical Action of Heat,
Trans. Roy. Soc. Edinb. vol. xx.

z 2
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sudden opening of this valve causes a temporary reduction of temperature and
pressure in the boiler itself.

(49.) Composite Vapour-Engines.

The Steam-and-Ether Engine of M. pu TREMBLEY is an example of what may be
called a Composite Vapour-Engine, in which two fluids are employed, a less and a
more volatile; the heat given out during the liquefaction of the less volatile fluid
serving to evaporate the more volatile fluid, which works an auxiliary engine, and is
liquefied in its turn by refrigeration.

Let the efficiency of the engine worked by the less volatile fluid be expressed in
the form

J—=;
n
1. . oy s .
so that ~ is the fraction of the whole heat expended which is given out to the more

volatile fluid. Let the efficiency of the engine worked by the more volatile fluid be

1
1—;

n

then the efficiency of the combined engines will be

1
l——. . . . . . .. ... (8L)

nn

If both the engines are perfect thermo-dynamic engines, let =, be the absolute tem-
perature at which the first fluid is evaporated ; =, that at which it is condensed, and
the second fluid evaporated; and =, that at which the second fluid is condensed ;
then,

l_l_l_rg—x. 1 T3—X 1__-_1___ _Tg—x
— ? nn! T—x’

(814.)

T—%’

being equal to the theoretical maximum efficiency of a simple thermo-dynamic
engine working between the limits of temperature =, and ;.

Composite Vapour-Engines, therefore, have the same theoretical maximum effi-
ciency with simple vapour-engines, and other engines moved by heat, working
between the same temperatures; but they may, nevertheless, enable the same effi-
ciency to be obtained with smaller engines.

(560.) Curves of Free Expansion for Nascent Vapour.

By Nascent Vapour is to be understood, that which is in the act of rising from a
mass of liquid. If this vapour be at once conducted to a condenser, without per-
forming any work, and there liquefied at a temperature lower than that at which it
was evaporated, its expansion, from the pressure of evaporation down to the pressure
of liquefaction, will take place according to a law defined by a curve analogous in
some respects, but not in all, to the curve of free expansion for a homogeneous sub-
stance referred to in Proposition VI. To determine theoretically the form of this
curve, it is necessary to know the properties of the isothermal curves and curves of
no transmission for the fluid in question in the gaseous state, when above the tem-
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perature of saturation for its pressure. Having these data, we can solve numerically
the following problem :—

Prorosition XIX.—ProBrEM. To draw the curve of Free Expansion for vapour
nascent under a given pressure.

(Solution.) In fig. 24, let AB, parallel to OX, be the isothermal line of an aggre-
gate of liquid and vapour at the pressure of evaporation P, corresponding to the tem-
perature 7,: let Av,, Bv, be ordinates parallel to OY ; so that v, is the volume of

Fig. 24,
Y
) ) T r
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\ \\ .
\
—N—
* gy g B Vo *

unity of weight of the liquid at this temperature, and v, that of unity of weight of the
vapour, at saturation. Let DF be a line drawn parallel to OX, at a distance repre-
senting any lower pressure P, corresponding to the temperature 7,. It is required to
find the point where the curve of free expansion drawn from B intersects DF.

Let v, be the volume of unity of weight of the liquid at the lower pressure and
temperature, v,D an ordinate parallel to OY, and DA a curve representing the law of
expansion of the liquid as the pressure and temperature increase. Draw the curves
of no transmission DN, BL indefinitely prolonged towards X ; ascertain the indefi-
nitely-prolonged area LBADN ; draw a curve of no transmission MC, cutting DF in
C, such that the indefinitely-prolonged area MCDN shall be equal to the indefinitely-
prolonged area LBADN ; then will C be the point required, where the curve of free
expansion BC intersects the line DF.

(Demonstration.) Unity of weight of the fluid being raised in the liquid state from
the temperature 7, and corresponding pressure P, to the temperature =, and corre-
sponding pressure P, ; then evaporated completely at the latter pressure and tem-
perature ; then expanded without performing work, until it falls to the original press-
ure P, ; then cooled at this pressure till it returns to the original temperature 7,, at
which it is finally liquefied ;—the area ABCD represents the expansive power deve-
loped during this cycle of operations, which, as no work is performed, must be wholly
expended in agitating the fluid, and reproducing, by friction, the heat consumed by
the free expansion represented by the curve BC; which heat is measured by the
indefinitely-prolonged area MCBL ; which area is therefore equal to the area ABCD.
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Subtracting from each of these equal areas the common area BUC, and adding to
each of the equal remainders the indefinitely prolonged area LUDN, we form the
areas MCDN, LBADN ; which are consequently equal. Q.E.D.

(561.) Of the Total Heat of Evaporation.

The symbolical expression of the preceding proposition is formed in the following
manner. The area LBADN represents the tofal heat of evaporation, at the tempera-
ture 7,, from the temperature 7,, and is composed of two parts, as follows :—

7y
LBADN:j‘ KudetLy, . . . . . . . . (82)
T2

of which the first is the heat necessary to raise the liquid, whose specific heat is K,
from 7, to 7,, and the second is the latent heat of evaporation at «,.

Let v, be the volume of unity of weight of the vapour at the pressure P, and tem-
perature of saturation 7,; draw the ordinate v,E, meeting DF in E, through which
point draw the indefinitely-prolonged curve of no transmission ER: then is the area
MCDN divided into two parts, as follows : —

Lf
MCDN=MCER+REDN=( Kjdr+L, . . . . (83)
72
in which equation 7, denotes the temperature corresponding to the point C on the
curve of free expansion, and K, the specific heat of the vapour, at the constant press-
ure P, when above the temperature of saturation ; so that the first term represents
the heat abstracted in lowering the temperature of the vapour from 7, to the tempe-
rature of saturation ,, at the constant pressure P,; and the second term, the latent
heat of evaporation at r,, abstracted during the liquefaction.
By equating the formulae (82.) and (83.), the following equation is obtained :—

7 7C
fKLdf+Lx—Lz=j Keds, . . . . . . . (84)
7, Ty

which is the symbolical solution of Proposition XIX., and shows a relation between
the total heat of evaporation of a fluid, the free expansion of its vapour, and the spe-
cific heat of that vapour at constant pressure.

(562.) Approxvimate Law for a Vapour which is a perfect gas.

If the vapour of the fluid in question be a perfect gas, and of very great volume
as compared with the fluid in the liquid state, the curve BC will be nearly a hyper-
bola, and will nearly coincide with the isothermal curve of the higher temperature 7,,
to which, consequently, 7, will be nearly equal; and the following equation will be
approximately true :

7, ™
KLd7+ Ll — L2= Kpd'l', e e e e e . (85 .)

Ty Te
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which, when the difference between the higher and lower temperatures diminishes
indefinitely, is reduced to the following :—

dL
Ki+77=Ke, . . . . . . . . . . (86)

that is to say :—

CoroLrLARY.— T THEOREM. When a vapour is a Perfect Gas, and very bulky as com-
pared with its liquid, the rate of increase of the total heat of evaporation with tempera-
ture is nearly equal to the specific heat of the vapour at constant pressure.

This was demonstrated by a different process, in a paper read to the Royal Society
of Edinburgh in 1850. It has not yet been ascertained, however, whether any vapour
at saturation approaches sufficiently near to the condition of perfect gas to render
the theorem applicable.

(63.) Concluding Remarks.

In conclusion, it may be observed, that the Theory of the Expansive Action of Heat
embodied in the propositions of this paper contains but one principle of hypothetical
origin; viz. Proposition XII., according to which the actual beat present in a substance
is simply proportional to its temperature, measured from a certain point of absolute
cold, and multiplied by a specific constant; and that although existing experimental
data may not be adequate to verify this principle precisely, they are still sufficient to
prove, that it is near enough to the trath for all purposes connected with Thermo-
dynamic Engines, and to afford a strong probability that it is an exact physical law.



